The preseq Manual

Timothy Daley Chao Deng Terence Li Andrew Smith

August 8, 2020

Contents

[y

Quick Start

2 Installation

3 Using preseq

4 File Format

5 Detailed usage

6 Ic_extrap Examples

7 gc_extrap Example

8 bound_pop Example

9 preseq Application Examples

10 FAQ

10

13

15

16

22

1 Quick Start

The preseq package is aimed to help researchers design and optimize sequencing experiments by using
population sampling models to infer properties of the population or the behavior under deeper sampling
based upon a small initial sequencing experiment. The estimates can then be used to examine the utility of
further sequencing, optimize the sequencing depth, or to screen multiple libraries to avoid low complexity
samples.

The four main programs are c_curve, lc_extrap, gc_extrap, and bound_pop. c_curve in-
terpolates the expected complexity curve based upon a hypergeometric formula and is primarily used to
check predictions from 1c_extrap and gc_extrap. lc_extrap uses rational function approximations
of Good & Toulmin’s [?] non-parametric empirical Bayes estimator to predict the library complexity of
future experiments, in essence looking into the future for hypothetical experiments.

gc_extrap uses a similar approach as 1c_extrap to predict the genome coverage, i.e. the number
of bases covered at least once, from deeper sequencing in a single cell or low input sequencing experiment
based on the observed coverage counts. An option is available to predict the coverage based on binned
coverage counts to speed up the estimates. gc_extrap requires mapped read or bed format input, so the
tool t o—mr is provided to convert bam format read to mapped read format.

bound_pop uses a non-parametric moment-based approach to conservatively estimate the total number
of classes in the sample, also called the species richness of the population that is sampled.

2 Installation

Download

preseq is available at http://smithlabresearch.org/software/preseq/ or
https://github.com/smithlabcode/preseq. Only clone the repo if you are planning to
modify or reuse the code. Most users should download a release. The README.md file in the GitHub
repo explains how to download a release, and not simply the source code files.

System Requirements

preseq runs on Unix-type systems. If the input file is in BAM format, the HTSLib API is required
(http://www.htslib.org/download/) but is included in all binaries and source code. If the input is a text file
of counts in a single column or is in BED format, SAMTools is not required. It has been tested on Linux
and Mac OS-X.

Installation: Instructions on how to install preseq are included in the README.md file in root of the
source tree for preseq. If you have problems installing preseq, please contact Andrew Smith at
andrewds@usc.edu

http://smithlabresearch.org/software/preseq/
https://github.com/smithlabcode/preseq
mailto:andrewds@usc.edu

3 Using preseq

Basic usage

To generate the complexity curve of a genomic library from a read file in BED or BAM format or a
duplicate count file, use the function c_curve. Use —o to specify the output name.

$./preseq c_curve -o complexity_output.txt input.bed

To predict the complexity curve of a sequencing library using an initial experiment in BED format, use the
function 1c_extrap. The required options are —o to specify the output of the yield estimates and the
input file, which is either a BED file sorted by chromosome, start position, end position, and strand or a
BAM file sorted with the samtools sort function. Additional options are available and are detailed below.

$./preseq lc_extrap -o future_yield.txt input.bed

For a low input sequencing experiment the genomic coverage is highly variable and uncertain function of
sequencing depth. Some regions may be missing due to locus dropout or preferentially amplified during
whole genome amplification. gc_ext rap allows the level genomic coverage from deep sequencing to be
predicted based on an initial sample. The input file format need to be a mapped read (MR) or BED, sorted
by chromosome, start position, and end position. Additional options are available and are detailed below.

$./preseq gc_extrap -o future_coverage.txt input.mr

4 File Format

Sorted read files in BED or BAM format

Input files are sorted mapped read files in BED or BAM format, or a text file consisting of one column
giving the observed read counts. The programs require that BED files are sorted by chromosome, start
position, end position, and strand. This can be achieved by using the command line function sort as follows:

sort -k 1,1 -k 2,2n -k 3,3n -k 6,6 input.bed > input.sort.bed

BAM format read files should be sorted by chromosome and start position. This can be done with the
SAMTools sort function. If the input is in BAM format, then the flag —B must be included.

If the input is paired end, the option —P can be set. In this case concordantly mapped reads and
disconcordantly mapped fragments are counted. This means that both ends of a disconcordantly mapped
read will each be counted separately. If a large number of reads are disconcordant, then the default single
end should be used or the disconcordantly mapped reads removed prior to running preseq. In this case only
the mapping location of the first mate is used as the unique molecular identifier [?].

Text files of observed read counts

For more general applications preseq allows the input to be a text file of observed read counts, one count

per line. To specify this input, the option —V must be set.

Such a text file can typically be constructed by command line arguments. Take for example an unmapped
sequencing experiment in FASTQ format. To predict the complexity, the unique molecular identifier needs
to use only the observed sequence. For instance, a unique molecular identifier used may be the first 20
bases in the observed sequence. A command line argument to construct the counts would then be

awk ’{ if (NR%4==2) print substr($0,1,20); }’ input.fastg | sort | unig -c
| awk ’{ print $1 }’ > counts.txt

More complicated unique molecular identifiers can be used, such as mapping position plus a random
barcode, but are too complicated to detail in this manual. For questions with such usage, please contact us
at andrewds@usc.edu

Mapped read format for gc_extrap

gc_extrap does not allow for input files to be in BAM format. We have found that some mappers give
inconsistent SAM flags for paired end reads, preventing efficient merging of reads in the proper order. We
provide the tool t o—mr to convert SAM or BAM format files to MR format. The MR or BED format file
needs to be sorted by chromosome, start, and end position before input into gc_extrap.

mailto:andrewds@usc.edu

S Detailed usage

c_curve

c_curve is used to compute the expected complexity curve of a mapped read file with a hypergeometric
formula [?]. Output is a text file with two columns. The first gives the total number of reads and the second
the corresponding number of distinct reads.

-0, -output Name of output file. Default prints to screen

-s, -step The step size for samples. Default is 1 million reads
-v —verbose Prints more information

-B, -bam Input file is in BAM format

-P, -pe Input is a paired end read file

-H, -hist Input is a text file of the observed histogram

-V, -vals Input is a text file of read counts

Ic_extrap

lc_extrap is used to generate the expected yield for theoretical larger experiments and bounds on the
number of distinct reads in the library and the associated confidence intervals, which is computed by
bootstrapping the observed duplicate counts histogram. Output is a text file with four columns. The first is
the total number of reads, second gives the corresponding average expected number of distinct reads, and
the third and fourth give the lower and upper limits of the confidence interval. Specifying verbose will print
out the counts histogram of the input file.

-0, -output Name of output file. Default prints to screen

-e, -extrap Max extrapolation. Default is 1 x 1019

-s, -step The step size for samples. Default is 1 million reads
-n, -bootstraps The number of bootstraps. Default is 100

-c, -cval Level for confidence intervals. Default is 0.95

-x, —-terms Max number of terms for extrapolation. Default is 100
-v -verbose Prints more information

-B, -bam Input file is in BAM format

-P, —pe Input is a paired end read file

-H, -hist Input is a text file of the observed histogram

-V, -vals Input is a text file of read counts

-Q, -quick Quick mode, option to estimate yield without bootstrapping for

confidence intervals

-D, -defects Defects mode, estimates the complexity curve without checking for
instabilities in the curve. Should only be used on datasets that fail
estimation without defects.

gc_extrap

For single cell or low input sequencing experiments gc_extrap is used to extrapolate the expected
number of bases covered at least once for theoretical larger experiments. Input format is required to be in
mapped read format and we have provided the tool t o—mr to convert bam format files to mr. Output is a
text file with four columns. The first is the total number of sequenced and mapped bases, second gives the
corresponding expected number of distinct bases covered, and the third and fourth give the lower and upper
limits of the confidence interval. Specifying verbose will print out the coverage counts histogram of the

input file.

-0, —output
-w, —max_width
-b, -bin_size
-e, —extrap

-s, —step

-n, -bootstraps
-c, —-cval

-x, —terms

-v -verbose

-D, -bed

-Q, _quj'Ck

Name of output file. Default prints to screen

max fragment length, set equal to read length for single end reads
bin size. Default is 10

Maximum extrapolation in base pairs. Default is 1 x 1012

The step size in bases between extrapolation points. Default is 100
million base pairs

The number of bootstraps. Default is 100

Level for confidence intervals. Default is 0.95

Max number of terms for extrapolation. Default is 100
Prints more information

Input file is in BED format without sequence information

Quick mode, option to estimate genomic coverage without
bootstrapping for confidence intervals

bound_pop

bound_pop is a method for estimating species richness, the total number of species or classes in the
sampled population. Input format is the same as 1c_extrap. Default output is a three column text file,
with the first column containing the estimated species richness and the second and third containing the
estimated lower and upper confidence intervals. If bound_pop is run in quick mode, then the output is
two columns. The first column will contain the estimated species richness and the second column will
contain the dimension or order of the approximation.

-0,

—P,

-t,

-n,

-c,

-V

_H’

_V,

-Q,

—output

-max_num_points

—tolerance

—-bootstraps

—clevel
-verbose

—-bam

-pe

-hist

-vals

—quick

Name of output file. Default prints to screen

Maximum number of points to use in the quadrature estimator.
Default is 10, corresponding to 20 entries of the counts histogram
being used.

Numerical tolerance for convergence of QR algorithm. Default is
1E — 20.

The number of bootstraps. Default is 100.
Level for confidence intervals. Default is 0.95.
Prints more information.

Input file is in BAM format.

Input is a paired end read file.

Input is a text file of the observed histogram.
Input is a text file of read counts.

Quick mode, option to estimate species richness without
bootstrapping for confidence intervals.

6 lc_extrap Examples

Usage and output of c_curve is similar, so the following examples are of 1c_extrap and its different
options.

Using a sorted read file in BED (or BAM with the —B flag) format as input

$./preseq lc_extrap -o future_yield.txt input.bed

TOTAL_READS EXPECTED.DISTINCT LOGNORMAL_LOWER_95%CI LOGNORMAL_UPPER_95%CI

0 0 0 0

1000000.0 955978.6 953946.4 958015.1
2000000.0 1897632.0 1892888.4 1902387.5
3000000.0 2829410.5 2819146.4 2839712.0
4000000.0 3751924.0 3732334.5 3771616.2
9999000000.0 185394069.4 76262245.8 450694319.0

This example uses a sorted read file in BED format from an initial experiment generated from single sperm
cells. As noted above, the default step size between yield estimates is 1 million, the default confidence
interval level is 95%, and the default extrapolation length is 10 billion.

Using a sorted read file in BED format as input, including the verbose option
$./preseq lc_extrap —-o future_yield.txt input.bed -v

As lc_extrap is running, information will print to screen that gives a read counts histogram of the input
file which truncates after the first bin value that has zero observations. Included here is the first 10 lines of
what would be observed:

TOTAL READS = 536855
DISTINCT READS = 516200
DISTINCT COUNTS = 48

MAX COUNT = 269
COUNTS OF 1 = 511413
MAX TERMS = 100
OBSERVED COUNTS (270)

1 511413

2 2202

3 597

10

Using a sorted read file in BED format as input, with options

$./preseq lc_extrap -e 15000000 -s 500000 -b 90 -c .90 -o future_yield.txt input.bed

TOTAL_READS EXPECTED.DISTINCT LOGNORMAL_LOWER_-90%CI LOGNORMAL_UPPER_90%CI

0 0 0 0

500000.0 481098.5 480329.1 481869.1
1000000.0 956070.6 954493.7 957650.2
1500000.0 1428183.4 1425461.7 1430910.2
2000000.0 1897886.0 1892501.7 1903285.7
14500000.0 12932529.0 12056525.8 13872180.9

Notice the slight changes, with the step sizes of the extrapolation now at 500,000 as specified, and the
maximum extrapolations ending at 15,000,000. The confidence intervals are now at a level of 90%.

Using a histogram or read counts as input

lc_extrap allows the input file to be an observed histogram. An example of the format of this histogram
is as followed:

1.68166e+07
4.55019%e+06
1.93787e+06
1.07257e+06
708034
513134
384077
282560
206108

0 146334

H O 00 J o U b w N

The following command will give output of the same format as the above examples.

$./preseq lc_extrap —-o future_yield.txt -H histogram.txt

Similarly, both 1c_extrap and c_curve allow the option to input read counts (text file should contain
ONLY the observed counts in a single column). For example, if a dataset had the following counts
histogram:

11

Then, the corresponding input file of just read counts could be as such:

PN WRE RN

Command should be run with the —V flag (not to be confused with —v for verbose mode):

$./preseq lc_extrap -o future_yield.txt -V counts.txt

12

7 gc_extrap Example

gc_extrap is designed for coverage extrapolation in single cell whole genome sequencing experiments.
For illustrative purposes we will examine an MDA whole genome sequencing experiment, SRA accession
SRR1777281. This experiment has 5.76 million paired end 101 base pair reads. We mapped the
experiment with bowtie2 v0.0-beta7 under default parameters. This resulted in 3.63 million concordantly

mapped fragment pairs and 2.1 million disconcordantly mapped fragments.
The first step is to convert the sorted bam file to mr format and sort it.

S ./to-mr —-o SRR1777281_bwt2.mr -L 10000 SRR1777281_bwt2.sort.bam
$ sort -k 1,1 -k 2,2n -k 3,3n SRR1777281_bwt2.mr > SRR1777281_bwt2.sort.mr

The resulting mapped read has 813 million bases (note that bases covered by two fragments of the same
read are only counted once) and 410 million covered bases.

As a default, gc_extrap divides the genome into 10 base pair non-overlapping bins. In default mode, the
running time of gc_extrap was under 12 minutes.

LOADING READS
MAPPED READ FORMAT

TOTAL READS = 5726883

BASE STEP SIZE = le+08

BIN STEP SIZE = 1le+07

TOTAL BINS = 8.1325e+07

BINS PER READ = 14.2006

DISTINCT BINS = 4.09582e+07

TOTAL BASES = 8.1325e+08

TOTAL COVERED BASES = 4.09582e+08

MAX COVERAGE COUNT = 79775

COUNTS OF 1 = 3.13723e+07

OBSERVED BIN COUNTS (79776)

1 3.13723e+07

2 6.97799e+06

3 1.72101e+06

The output is as follows:
TOTAL_BASES EXPECTED_COVERED_BASES LOWER-95%CI ~ UPPER.95%CI
0 0 0 0
100000000.0 64522380.0 63075879.1 66002053.1
200000000.0 123422455.0 120747705.7 126156454.1
300000000.0 178054120.0 174319619.1 181868626.2
400000000.0 229008295.0 224352188.5 233761032.3
500000000.0 276727080.0 271265011.6 282299130.1
999900000000.0 1826891418.6 1621208958.1 2058668772.4

To run gc_ext rap at single base resolution, the option - 1 is required. This results in a significant
increase in the running time of the algorithm. For this case the running time was 113 minutes.

13

$./preseq gc_extrap SRR1777281_bwt2.sort.mr —-o SRR1777281_bwt2_lbp_gc_extrap.txt -b 1 -v

LOADING READS
MAPPED READ FORMAT

TOTAL READS = 5726883
BASE STEP SIZE = le+08

BIN STEP SIZE = 1le+08

TOTAL BINS = 8.13236e+08
BINS PER READ = 142.003
DISTINCT BINS = 4.09454e+08
TOTAL BASES = 8.13236e+08
TOTAL COVERED BASES = 4.09454e+08
MAX COVERAGE COUNT = 80028

COUNTS OF 1 3.13527e+08
OBSERVED BIN COUNTS (80029)

1 3.13527e+08

2 6.98288e+07

3 1.722e+07
TOTAL_BASES EXPECTED_COVERED_BASES LOWER_95%CI UPPER_95%CI
0 0 0 0
100000000.0 64680427.0 64284593.4 65078698.0
200000000.0 123709880.0 122978429.6 124445680.9
300000000.0 178447901.0 177427065.8 179474609.6
400000000.0 229488768.0 228216803.2 230767822.1
500000000.0 277279369.5 275788078.2 278778724.8
999900000000.0 1838021604.0 1682515315.7 2007900543.3

14

8 bound pop Example

We examine T-Cell S repertoire (TCR/) sampling data downloaded from
http://mitcr.milaboratory.com/datasets/aging2013/ and viewed through MiTCR
(http://mitcr.milaboratory.com/). (note: link seems to be dead) The first column
corresponds to the observed TCRS counts. This can be summarized in a duplicate counts histogram, easily
formed by using the hist function in R.

We will first examine the experiment L.1_10_M9. The first ten entries of the duplicate counts histogram is
as follows:

433541
56447
13030
4120
2841
1981
1338
970
814

0 632

H O 0 J o U W N

There are 861,156 total observed TCR sequences and 520,315 distinct TCR sequencing. We

$./preseq bound_pop —-H L1_10_M9_hist.txt -o L1_10_M9_estim_species_richness.txt

logmean_estimated_-unobs log_lower_ci log.upper._ci
2976677.3 2862770.9 3095116.0

In quick mode, the output is as follows:

quadrature_estimated_-unobs n_points
2969646.3 2

preseq estimates that there are at least two million unobserved TCRS sequences in the sample. This
implies that the vast majority of the TCRS sequences are unobserved in this sample.

15

http://mitcr.milaboratory.com/datasets/aging2013/
http://mitcr.milaboratory.com/

9 preseq Application Examples

Screening multiple libraries

This section provides a more detailed example using data from different experiments to illustrate how
preseq might be applied. Because it is important to avoid spending time on low complexity samples, it is
important to decide after observing an initial experiment whether or not it is beneficial to continue with
sequencing. The data in this example comes from a study (accession number SRA061610) using single cell
sperm cells amplified by Multiple Annealing and Looping Based Amplification Cycles (MALBAC) [?] and
focuses on three libraries coming from different experiments from the study (SRX205369, SRX205370,
SRX205372).

These libraries help show what would be considered a relatively poor library and a relatively good library,
as well as compare the complexity curves obtained from running c_curve and 1c_extrap, to show how
lc_extrap would help in the decision to sequence further. The black diagonal line represents an ideal
library, in which every read is a distinct read (though this cannot be achieved in reality). The full
experiments were down sampled at 5% to obtain a mock initial experiment of the libraries, as shown here,
where we have the complexity curves of the initial experiments generated by c_curve:

distinct reads (M

0 1 2 3 4 5 6
total reads (M)

— SRX205372 — SRX205369 — SRX205370
Lu et al. Science 2012

Figure 1: Initial observed complexities

16

With such a relatively small amount of reads sequenced, it is hard in the first stages of a study to guess at
whether it is not worth sequencing a library further, as all three libraries seem to be relatively good.

This is a comparison of the full experiment complexity curves and the extrapolated complexity curves
created using information from the initial experiments above as input. The dashed lines indicate the
complexity curves predicted by 1c_extrap, and the solid lines are the expected complexity curves of the
full experiments, obtained using c_curve. Note that the dashed curves follow the solid curves very
closely, only differing slightly towards the end, meaning 1c_extrap gives a good predicted yield curve.
Using this, it is clear that if the initial experiments were the only available data and 1c_extrap was run,
SRX?205372 would likely be discarded, as it is a poor library, and SRX205369 and SRX205370 would
probably be used for further sequencing, as their complexity curves indicate that sequencing more would

yield enough information to justify the costs. If the researcher were to only want to sequence one library
deep, then SRX205370 would be an obvious choice.

80 -
=]
& 60
©
©
o
2 404
R
©
20
0 -
o T T T T 1
0 20 40 60 80 100
total reads (M)
SRX205372 SRX205369 SRX205370
— Observed —— observed —— oObserved
predicted predicted - - - predicted

Figure 2: Estimated versus observed library complexities.

17

Saturation of reads and junctions for RNA sequencing experiments

A recent paper from the Rinn lab [?] developed a targeted capture RNA sequencing protocol to deeply
investigate chosen portions of the transcriptome. A comparison of the results from a standard RNA
sequencing experiment (RNA-seq; SRA accession SRX061769) and a targeted capture RNA sequencing
experiment (Capture-seq; SRA accession SRX061768) reveals a startling amount of transcriptional
complexity missed by standard RNA sequencing in the targeted regions. A large number of rare
transcriptional events such as alternative splices, alternative isoforms, and long non-coding RNAs were
newly identified with the targeted sequencing.

A current vigorous debate exists on whether these rare events are truly transcriptional events or are merely
due to sequencing or transcriptional noise (see [?] and [?]). We do not seek to address these issues, but
merely to comment on the estimated complexity of rare transcriptional events in sequencing libraries
identified by current protocols.

We took the two Illumina sequencing libraries from [?] and mapped them according to the protocol given.
We downsampled 10% of the library and compared the estimated library complexities (single end) with the
observed library complexity for both libraries. We also took the junction information contained in the file
junctions.bed in the Tophat output folder to estimate the junction complexity. Since the Sth column
(excluding the first line) is the number of times each distinct junction is observed, we can simply cut out
these values as input for 1c_extrap or c_curve with the flag —v. A simple command line example
follows.

sed ’"1d’ tophat/junctions.bed | cut -f 5 > junction_vals.txt
./preseq lc_extrap -V Jjunction_vals.txt -o Jjunction_vals_extrap.txt

The output TOTAL_READS column will be in terms of the number of total junctions (not reads), so scaling
by the average number of junctions per read will give the appropriate scale for plotting on the x-axis.

20 200+
0
0 2 150
154 E
E 2 | e
@ > | T
® s
¢ 104 - £ 100
ot =" 2
B . " B
° £
2
54 T 504
/__-—-—-’-'-—‘
- - -
0 04
T T T T T T T T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
total reads (millions) total reads (millions)
RNA-seq Capture-seq
observed observed
----- estimated estimated

Figure 3: A comparison of complexities of standard RNA-seq and targeted capture RNA-seq. Estimated
complexities for both cases were estimated using 10% of the data.

18

We see from the estimated library that the RNA-seq library is far from saturated, while it appears that the
Capture-seq library may be close. On the other hand, the junction complexity of both libraries indicates
that the full scope of juctions identified by Tophat is far from saturated in both libraries. This indicates that
large number of rare junctions still remain to be identified in the libraries.

19

Comparing coverage for single cell whole genome sequencing library preparations

We will use gc_extrap to compare coverage profiles across library preparation protocols. We use the
data from Fu er al. [?]. We downloaded SRA accessions , SRR1777243, SRR1777245, SRR1777251,
SRR1777274, and SRR1777281. These correspond to bulk, DOP-PCR, eWGA, MALBAC, and MDA. We
mapped the reads with bowtie2 to hg19 and ran gc_ext rap on the libraries with default parameters. To
compare the libraries we scaled the x-axis to the total number of sequenced reads by dividing by the
number total bases (TOTAL BASES in verbose mode) and multiplying by the number of sequenced reads.

covered bases

4 — bulk

| DOP-PCR
eWGA

! MALBAC
41 —— MDA

I I I I I I

0e+00 1e+08 2e+08 3e+08 4e+08 5e+08

0.0e+00 5.0e+08 1.0e+09 1.5e+09 2.0e+09 2.5e+09 3.0e+09

sequenced reads

Figure 4: Coverage comparison of single cell whole genome sequencing experiments.

In our previous paper [?] we compared coverage for DOP-PCR, MALBAC, and MDA. We found that
typically DOP-PCR results in the lowest coverage and MDA the highest. The results for the libraries
investigated here agree with our previous results. Notably, eWGA had the highest estimated coverage. This
indicates that more investigation of this new library prep is worthwhile to determine if the observed results
hold in general.

20

Estimating and analyzing TCRJ richness

In this section we will use bound_pop to estimate TCR/ richness from TCRf sequencing data taken from
Britanova et al. [?]. We examined one of the datasets in section 8 but now we investigate all 39 TCRS
sequencing experiments.

The average number of observations, or sampled TCRf sequences, was 992,359 with a range of (861,156,
999,024) indicating that all experiments were sampled to a similar depth. In contrast, the range of the
number of distinct TCRS sequences observed was quite large with a minimum of 133,464, a maximum of
772,223, and a mean of 461,797.

The observed TCRJ richness is obviously biased so we used bound_pop to estimate the total richness.
The estimated TCRS richness ranges from a minimum of 823,223 to a maximum of 8,945,797 with a mean
of 2,969,305.

Note that any statistical test for relationship will be liberal since the estimation procedure adds extra
variance that is not apparent from the estimated values [?]. A standard test will tend to reject more often
when the null hypothesis is false and will tend to accept less often when the null hypothesis is true.
Therefore we can use standard tests to determine where to investigate further.

First there appears to be no difference in estimated TCR{ richness between the sexes of the participants
(mean of 3,296,501 from 19 females versus 2,658,468 from 20 males). We next investigate the relationship
between the age of the participant and the estimated TCR{ richness, a topic investigated by Britanova et al.

Species Richness
6e+06 8e+06 1e+07
Il Il 1
1
1

4e+06
Il
1

2e+06
Il
1

0e+00
|

Age

Figure 5: Estimated TCRS richness versus age and the least square fit. R? = 0.452, intercept = 5, 117, 862,
slope = —43, 802.

We see that there is a strong negative relationship between the estimated species richness and age.
Interestingly we see a lack of homoscedasticity in the data, as the data shows a noticable decrease in
variation as a function of age. Clearly further investigation into the relationship between immune repertoire
and age will be of interest.

21

10 FAQ

1. Q — When compiling the preseq binary, I receive the error
fatal error: gsl/gsl.cdf.h: No such file or directory

A. — The default location of the GSL library will be in ’ /usr/local/include/gsl’. Open
the Makefile and append ”~I /usr/local/include” after CXX = g++. You may be
receiving this error because the GSL library is not installed on the default search paths of your
compiler, and you will need to specify the location.

2. Q — When compiling the preseq binary, I receive the error
Undefined symbols for architecture x86_64:
"_packIntl6", referenced from:
_deflate block in bgzf.o
"_packInt32", referenced from:
_deflate block in bgzf.o
"_unpackIntlé", referenced from:
bgzf_readblock in bgzf.o
_check_header in bgzf.o

A. — Go to the SAMTools directory and open the file bgzf.c. Find the functions packInt16,
unpackIntl16, and packInt32. Comment out the "inline” before each function name.

3. Q — I compile the preseq binary but receive the error
terminate called after throwing an instance of ’std::string’

A. — This error is typically called because either the flag -B was not included to specify bam input
or because the linking to SAMTools was not included when compiling preseq. To ensure that the
linking was done properly, check for the flag ~-DHAVE_SAMTOOLS.

4. Q — When running 1c_extrap, I receive the error
ERROR: too many iterations, poor sample

A.— Most commonly this is due to the presence of defects in the approximation which cause the
estimates to be unstable. Setting the step size larger (with the flag —s) will help to avoid the
defects. The default step size is 1M reads or 0.05% of the input sample size rounded up to the
nearest million, whichever is larger. A consequence of this action will be a reduction in the
observed smoothness of the curve.

5. Q — When running 1c_extrap, I receive the error
sample not sufficiently deep or duplicates removed

A. — There may be two causes for this, either duplicates have been removed and every observed
read is distinct or there is not sufficient variation in the library for 1c_extrap to run.

22

The information required by 1c_extrap is essentially the number of times each distinct read was
observed, which we call the duplicate counts. Without sufficient variation in the duplicate counts
we cannot extrapolate the complexity of the library. We have set the minimum required max
duplicate count (the largest number of times any read has been observed) to 4. If the input library
does not satisfy this, then either a parametric model such as a Poisson or Negative Binomial may
be appropriate or deeper sequencing may be required.

6. Q — When running 1c_extrap, I receive the error
Library expected to saturate in doubling of size, unable to extrapolate

A.— A simple two-fold extrapolation using the Good-Toulmin power series, which is within the
radius of convergence and therefore rational function approximation is not needed, is performed to
ensure that the sample is not overly saturated. If the Good-Toulmin formula is negative, this
indicates that the library will likely completely saturate by doubling the experiment size and so
extrapolation is not needed. Often this will occur if the number of reads observed twice (n2) is
greater than the number of reads observed once (n1). In this case one can use simple estimators
like Chao’s [?] (n?/2ns) or Zelterman’s [?] (1/(exp(2n2/n1) — 1)) can be used to estimate the
number of remaining in the library.

If none of these solutions worked, please email us at andrewds@usc . edu and please include the
standard output from running preseq in verbose mode (specifically the duplicate counts histogram) so that
we can look into the problem and rectify problems in future versions. Also, feel free to email us with any
other questions or concerns. The preseq software is still under development so we would appreciate any
advice, comments, or notification of any possible bugs. Thanks!

23

mailto:andrewds@usc.edu

	Quick Start
	Installation
	Using preseq
	File Format
	Detailed usage
	lc_extrap Examples
	gc_extrap Example
	bound_pop Example
	preseq Application Examples
	FAQ

