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Objective: To evaluate whether male fertility status and/or embryo quality during in vitro fertilization (IVF) therapy can be predicted
based on genomewide sperm deoxyribonucleic acid (DNA) methylation patterns.
Design: Retrospective cohort study.
Setting: University-based fertility center.
Patient(s): Participants were 127 men undergoing IVF treatment (where any major female factor cause of infertility had been ruled
out), and 54 normozoospermic, fertile men. The IVF patients were stratified into 2 groups: patients who had generally good embryo-
genesis and a positive pregnancy (n ¼ 55), and patients with generally poor embryogenesis (n ¼ 72; 42 positive and 30 negative preg-
nancies) after IVF.
Intervention(s): Genomewide sperm DNA methylation analysis was performed to measure methylation at >485,000 sites across the
genome.
Main Outcome Measure(s): A comparison was made of DNA methylation patterns of IVF patients vs. normozoospermic, fertile men.
Result(s): Predictive models proved to be highly accurate in classifying male fertility status (fertile or infertile), with 82% sensitivity,
and 99% positive predictive value. Hierarchic clustering identified clusters enriched for IVF patient samples and for poor-quality–em-
bryo samples. Models built to identify samples within these groups, from neat samples, achieved positive predictive valueR94% while
identifying >one fifth of all IVF patient and poor-quality–embryo samples in each case. Using density gradient prepared samples, the
same approach recovered 46% of poor-quality–embryo samples with no false positives.
Conclusion(s): Sperm DNAmethylation patterns differ significantly and consistently for infertile vs. fertile, normozoospermic men. In
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addition, DNA methylation patterns may be predictive of embryo quality during IVF. (Fertil
Steril� 2015;104:1388–97. �2015 by American Society for Reproductive Medicine.)
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T he mainstay of male infertility
diagnosis is the standard semen
analysis. With the exception of

modification of criteria for morphologic
grading, semen analysis has changed
very little over the past several decades.
Numerous studies have evaluated the
prognostic value of the various semen
parameters evaluated by the standard
analysis (1–3). Except for severely
diminished sperm count or motility, the
predictive value of semen analysis for
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fertility is modest at best. A milestone study of the predictive
value of semen analysis concluded that although it is useful
for classifying men as being either subfertile, of
indeterminate fertility, or fertile, it is very ineffective for
diagnosing infertility, owing to the fact that semen
parameters formany infertilemen fallwithinnormal ranges (4).

The main parameters evaluated in semen analysis,
namely sperm count, motility, viability, and morphology,
are somewhat subjective; consequently, they are subject to
technical error. Although continual training and assessment,
quality control measures, and proficiency testing all minimize
technical error, multiple studies have demonstrated that coef-
ficients of variation (CVs) between labs and technicians
commonly fall in the 20%–30% range, with higher CVs re-
ported in some studies (5–7). In addition to the technical
variability inherent in the testing, semen parameters for the
same individual vary significantly among collections, with
CVs of approximately 30% between any 2 collections from
the same man, according to a recent study of >5,000 men
(8). Given this inherent variability, the World Health
Organization recommends that R2 semen analyses be
performed before clinical decisions are made (9).

Lastly, the predictive value of the various semen param-
eters has been demonstrated to be severely limited. Two large
and comprehensive studies have been performed to charac-
terize semen parameters in healthy, fertile men; fertile and
subfertile ranges have been defined for each parameter as-
sessed (4, 10). Nevertheless, assessment using standard
semen analysis is broadly accepted to fall far short of the
goal of predicting fertility potential.

Adjunct tests have been developed over the years, such as
sperm deoxyribonucleic acid (DNA) damage assessment,
capacitation, and acrosome reaction tests, egg and zona pene-
tration assays, antisperm antibody testing, aneuploidy
screening, motile sperm organelle morphology examination,
and hyaluronic acid binding (11–18). Although these tests
can be helpful in characterizing fertility potential in select
patients, the predictive values of the assays are generally
accepted as being suboptimal (19). The need for additional
diagnostic tools for evaluation of male infertility is widely
acknowledged (2).

With advancing molecular diagnostic tools, the identifica-
tionofnovel genetic and epigeneticmarkers ofmale infertility is
becoming a realistic option. A few genetic markers for male
infertility have been identified, such as Y-chromosome micro-
deletions (20), Klinefelter syndrome (21), and DPY19L and
SPATA16 mutations (22–25), among others. These genetic
features are associated with extreme male infertility
phenotypes, including severe oligozoospermia, nonobstructive
azoospermia, and complete globozoospermia, accounting for
a very small percentage of infertile men.

Although genetics refers to the DNA sequence itself, epi-
genetics refers to modifiable but generally stable modifica-
tions to the DNA or chromatin packaging. Direct DNA
modifications consist of methylation alteration to the 5-
carbon position of cytosine bases, usually in the context of
cytosine-guanine dinucleotides (CpGs). Chromatin packaging
modifications include covalent modifications to histones, and
in sperm, the distribution of histones and protamines in the
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genome. Epigenomic information can be reliably replicated
through cell divisions, and although the epigenome is largely
reprogrammed in early gametogenesis and embryogenesis,
some portion of the epigenome in parental gametes is trans-
mitted to offspring. The amount of epigenomic information
that is heritable in humans is largely unknown, as are the
functions and consequences of epigenomic inheritance.

Sperm epigenetics is an emerging area of study, driven
largely by early observations that the way DNA is packaged
within a sperm head may affect the capacity of sperm to
fertilize an egg and/or the developmental capacity of the
zygote (26–29). Sperm DNA has long been recognized as
being packaged differently, compared with other cell types
(namely by protamines). Protamine packaging was
generally assumed to serve utilitarian purposes, including
compaction of the sperm nucleus to facilitate efficient
motility, and protection of sperm DNA from the harsh
environment of the female reproductive tract (30). However,
more recent characterization of the epigenetic landscape of
the sperm nucleus, specifically the localization of, and
modification to, histones that remain associated with sperm
DNA after replacement of most histones by protamines,
indicates that sperm epigenetic architecture reflects the
development of mature sperm from spermatogonial stem
cells and likely contributes to early embryonic development
(31, 32).

Numerous recent studies have reported abnormal sperm
DNA methylation patterns associated with infertility, partic-
ularly in oligozoospermic patients. However, most of these
studies evaluated just 1 or a few genes, or included very small
cohorts using genomewide approaches (33–48). The aim of
the current study was to evaluate genomewide sperm DNA
methylation patterns in a large cohort of sperm donors and
in vitro fertilization (IVF) patients, to determine whether
DNA methylation patterns are predictive of fertility status
or IVF prognosis.

The current study was motivated by 3 primary factors. (1)
The current diagnostic standard for male infertility (i.e.,
semen analysis) provides minimal clinically actionable infor-
mation. (2) Numerous exploratory studies have established
that altered sperm DNA methylation in single or multiple
genes is associated with male infertility (49, 50). (3) Sperm
DNA methylation patterns are relatively stable within an
individual (51). The goal of the current study was to
determine whether sperm DNA methylation patterns can be
used to predict male fertility status and IVF success.
MATERIALS AND METHODS
Sample Selection

Semen samples used for the current study were obtained
from the University of Utah tissue bank, after informed
consent had been provided according to IRB-approved pro-
tocols. Individuals were asked to adhere to general semen
collection instructions, which included 2–5 days of absti-
nence immediately preceding collection. Collected samples
were mixed in a 1:1 ratio with Test Yolk Buffer (Irvine Scien-
tific) and stored in liquid nitrogen until they were used in this
study.
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Controls

Control samples (n¼54)were collected fromnormozoospermic
menwith proven fertility.Most control sampleswere composed
of whole ejaculate (n ¼ 36), whereas 12 were prepared by
density-gradient centrifugation prior to cryopreservation. For
6 samples, the preparation method was not recorded.
Patient Samples

Samples were selected from 292 IVF patients based on embryo
quality and pregnancy outcome (Supplemental Table 1, avail-
able online). Couples with moderate-to-severe female factor
infertility, including advanced maternal age and severe endo-
metriosis or polycystic ovarian syndrome, were excluded
from the study. A total of 55 patients were selected because
they had high embryo quality overall, and a confirmed chem-
ical pregnancy. Embryos were scored based on previously
reported criteria relating to blastomere number and fragmen-
tation in early embryos, and trophectoderm and inner cell-
mass quality in blastocysts (52).

Fetal heartbeat was detected in 49 patients (89.1%), unde-
tectable in 4 patients (7.3%), and not recorded in 2 patients
(3.6%). Seventy-two patients were selected who displayed
generally poor embryogenesis, including increased rates of
early or late developmental arrest, or reduced embryo quality
due to blastomere fragmentation. Of these, 42 achieved a
pregnancy; 30 did not. Of the 42 pregnant patients, fetal
heartbeat was detected in 33 (78.6%), undetectable in 8
(19%), and not recorded in 1 patient (2.4%). Live-birth
outcome data were not available for all patients, but for pa-
tients for whom data was recorded, 75% in the ‘‘good embryo’’
group delivered successfully, compared with only 31.4% in
the ‘‘poor embryo’’ group.
Gradient-Prepared Patient Samples

A separate experiment was performed on a subset of the sam-
ples from IVF patients. For samples that contained >5 � 106

progressively motile sperm (n ¼ 44), DNA methylation was
assessed on the whole ejaculate; separately, a portion of the
sample was purified using a 45%/90% discontinuous isolate
gradient, and the 90% fraction was subjected to DNA methyl-
ation analysis as well.
Patient Details

Supplemental Table 2 (available online) presents the fre-
quency of male factor infertility (defined as being below the
World Health Organization threshold inR1 of the semen pa-
rameters), female factor infertility, the presence of both male
and female factors, and the designation of idiopathic infer-
tility among both partners. Shown in addition is the nature
of the various mild female factors within each group of IVF
patients. The frequencies of all factors are statistically similar
among groups (P>.05; c2 analysis).
Sample Preparation

For DNA isolation, sperm samples were thawed simulta-
neously andwere subjected to a column-basedDNA extraction
1390
protocol with sperm-specific modification to the DNeasy kit
(Qiagen). Prior to DNA extraction, somatic cell lysis was per-
formed by incubation in somatic cell lysis buffer (0.1% sodium
dodecyl sulfate, 0.5% Triton X-100 in diethylpyrocarbonate
H2O) for 20 minutes on ice, to eliminate white blood cell
contamination. After somatic cell lysis, the sperm were pel-
leted, and a visual inspection of each sample was performed
to ensure the absence of all potentially contaminating cells
before proceeding.

For bisulfite conversion and array processing, extracted
sperm DNA was bisulfite converted with the EZ-96 DNA
Methylation-Gold kit (Zymo Research), according to manu-
facturer recommendations specifically for use with array plat-
forms. The converted DNA was delivered to the University of
Utah Genomics Core Facility and hybridized to Infinium Hu-
manMethylation450 BeadChip microarrays (Illumina) and
analyzed according to manufacturer protocols.
Statistical Analysis

After the hybridization protocol, arrays were scanned. The
minfi software package (Bioconductor; (53)) was used to
generate b-values (so called because they are expected to
follow a b-distribution, each is a value between zero and 1,
for each probed CpG, representing the proportion of DNA
molecules that are methylated at the given locus). The same
package was used to apply subset-quantile within array
normalization (54) to the extracted b-values. Statistical com-
parisons were made as follows: (1) all patients vs. controls;
and (2) IVF patients with good vs. poor embryogenesis.

Hierarchic clustering was applied using the Euclidean dis-
tance between methylation profiles. For construction of
discriminative models to differentiate IVF patient samples
from fertile donor samples, and good from poor-quality–em-
bryo samples, we evaluated 2 types of features to describe
each sample: the Euclidean distance between the sample
and all other samples in the training set, and a subset of the
individual CpG methylation values for each sample. In the
latter case, to select the subset, we first identified the 500
most-discriminative loci using Wilcoxon’s rank sum test
(i.e., the 500 loci with the lowest P values).

All models were constructed (including feature-selection
steps) and evaluated using 10-fold cross-validation. Briefly,
the samples are split into 10 stratified folds (10 disjoint sets
in which the proportion of classes in each set approximates,
as closely as possible, the proportion in the full dataset).
Ten rounds of testing are conducted; for each round, 1 of
the 10 folds is held out of the complete dataset, as testing
data, and the remaining 9 folds are used to train the model.
After model training is complete, the ‘‘held-out’’ testing
data are classified, and the numbers of true vs. false positives
and negatives are recorded. This process is repeated for all 10
folds of the data, such that every sample is tested (classified)
exactly once, and every sample is unknown to the model that
classifies it.

For gene ontology analysis, we ranked genes by the num-
ber of differentially methylated CpGs (P< .05, Wilcoxon’s
rank sum test). For grouping genes into sets that were either
differentially methylated or not differentially methylated,
VOL. 104 NO. 6 / DECEMBER 2015
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we first combined individual P values for the CpGs within the
promoter region, which we define as �5 kb of the transcrip-
tion start site, of each RefSeq transcript (55), using the method
of Stouffer et al. (56). We considered any gene to be differen-
tially methylated if R1 of its transcripts showed differential
methylation within this �5-kb window around its transcrip-
tion start site. Unless otherwise stated, all P values are cor-
rected for multiple hypothesis testing using the method of
Benjamini and Hochberg (57).
Global Classifiers

To capture global properties of DNA methylomes, we con-
structed models based on the Euclidean distance between sam-
ples. We used a simple rule-based classifier (which we call a
‘‘decision stump’’), given as follows: ‘‘If distance to training
instance X is greater than Y, classify the sample as class A;
else classify it as class B,’’ where A and B depend on the com-
parison (for example, good vs. poor embryo quality). We define
the cost of any such rule as the weighted sum of the number of
false positives and false negatives resulting from use of the rule
to classify the trainingdata. In the simplest case, each false pos-
itive or false negative is given aweight of 1, and the cost is sim-
ply the number of samples that are misclassified by the rule on
the training data. The values of X and Y are learned by exhaus-
tive enumeration of all possible training instances and discrim-
inative thresholds on the training data; the one with the lowest
cost is selected. We modulated the tradeoff between sensitivity
and specificity in this learning process by adjusting the relative
cost of false positives to false negatives, which we report in the
results as the ‘‘false-positive cost’’ of a classification scheme.
Schemes that have a high false-positive cost favor results
with fewer false positives and hence high specificity. We
considered such models to be more clinically valuable than
those with high sensitivity.
Site-Specific Classifiers

These classifiers were constructed to explore sample classifi-
cation based on the DNA methylation status (b-values) of a
subset of individual CpGs. Here, as before, we used the
decision-stump classifier, but in addition, we evaluated a se-
lection of more-complex models and learning algorithms: a
support vector machine, a nearest-neighbor classifier, a deci-
sion tree, and a naïve Bayes technique. For these models, we
used the WEKA implementations (WEKA data mining soft-
ware), run with default parameters, unless otherwise speci-
fied. Further, we augmented several of these with adaptive
boosting (AdaBoost; an R software package), and bootstrap
aggregating (bagging)—methods designed to avoid overfitting
the model to the training data. As with the global classifiers,
we favored high-specificity models. For models in which the
false-positive cost could not be modulated during training,
we weighted the training instances to achieve the same result.

RESULTS
Methylation in Purified vs. Unpurified Samples

Hierarchic clustering of samples showed that, although puri-
fied and unpurified samples were different, purified and un-
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purified methylomes that were derived from the same
sample always clustered with one another; intersample vari-
ations were greater than those among purification methods
(Supplemental Fig. 1, available online).
Is Aberrant DNAMethylation Predictive of Fertility
Status and Embryo Quality?

We first performed hierarchic clustering of all 163 neat sam-
ples, based on the methylation level of all of the >485,000
CpGs interrogated by the array. This clustering revealed an
‘‘out-group’’ composed exclusively of IVF patient samples
(Fig. 1A, labeled ‘‘patient-only cluster’’), which contained
within it a subgroup composed almost exclusively of samples
that led to poor embryo quality (labeled ‘‘poor embryo-quality
clusters’’ in Fig. 1A). However, most IVF patient samples and
poor-quality–embryo samples were distributed evenly among
fertile donor samples and good-quality–embryo samples
outside this group.

To verify the predictive power of the genomewide
methylation differences observed from the clustering, we
trained a simple decision-stump classifier using 10-fold
cross-validation, in which each sample was described by the
Euclidean distance to each of the samples in the training
set. We adjusted the false-positive cost of the training algo-
rithm (see Materials and Methods section for details) from 1
(i.e., a false positive was considered as costly as a false nega-
tive during training) to 10 (i.e., a false positive was considered
10 times more costly than a false negative when training). We
observed that with high false-positive costs, the classifier
could achieve specificity >0.9, while identifying one third
(33%) of poor-quality–embryo samples, and 27% of IVF pa-
tient samples (Fig. 1B and C).

We replicated this analysis on the density gradient–puri-
fied samples and observed an even greater separation of
good- vs. poor-quality–embryo samples, although little
discernible separation of IVF patient and donor samples was
observed, possibly because of the small number of purified
donor samples (Fig. 2A). This lack of separation was reflected
in the classification results from these samples, which showed
even greater classifier identification of poor-quality–embryo
samples, with just under one half of the poor-quality–embryo
patients recovered, with zero false positives, whereas classi-
fier differentiation between IVF patient and donor samples
was largely eliminated (Fig. 2B and C).
Is Predictive Differential Methylation
Concentrated Within Specific CpGs or Annotation
Categories?

To better understand whether differences in methylation be-
tween groups were concentrated at particular individual
CpGs or regions, we called differentially methylated positions
(DMPs) using Wilcoxon’s rank sum test. As a control, we
repeated this process using randomly shuffled sample labels.
The number of differentially methylated CpGs that were iden-
tified between neat IVF patient vs. donor samples, both before
and after correction for multiple hypothesis testing, is shown
in Figure 3A. The histogram of P values from all CpGs is
1391



FIGURE 1

Aberrant global methylation profiles are indicative of fertility status and poor embryo quality. (A) Hierarchic clustering of 163 neat samples based on
a globalmethylation profile; an ‘‘out-group’’ of exclusively patient samples, with a subgroup strongly enriched for poor embryo samples is apparent.
(B) The ROC curve (left) for prediction of patient status (IVF patient or fertile donor). Classification was performed by building a 1-level decision tree
(Supplemental Methods) based on Euclidean distance between samples. Training and testing is performed using 10-fold cross-validation. The same
information is shown for the task of predicting embryo quality (right). In both cases, high confidence predictions (bottom right of plots) have a high
probability of being correct. (C) Classification statistics for the ROC curves are presented in (B). Samples were predicted to be positive (i.e., a patient
sample or a poor-quality–embryo sample) when the probability exceeded 50%. In both cases, high specificity and positive predictive value are
achieved. AUC ¼ area under the curve; FP ¼ false positive; NPV ¼ negative predictive value; PPV ¼ positive predictive value; Se. ¼ sensitivity;
Sp. ¼ specificity.
Aston. Sperm DNA methylation and infertility. Fertil Steril 2015.
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displayed in Figure 3B; it shows a sharp spike in significant P
values for actual labels, with a relatively flat distribution for
the shuffled control. The significant CpGs that were identified
using actual labels showed no discernible bias toward partic-
ular genomic annotation categories (Fig. 3C).

We used the test for differential methylation at individ-
ual CpGs to perform feature selection, with the expectation
that the CpGs that show the strongest indication of differ-
ential methylation would make good features for predictive
models. To estimate how reproducible the selection of
particular features (CpGs) would be with various datasets,
we broke the samples into 10 groups of approximately
equal size. For each group, we repeated the selection of
DMPs with those samples that had been held out. We
observed that the number of groups for which a CpG was
selected in the top 100 most differentially methylated
CpGs was generally low when using randomly shuffled la-
bels, and follows a Poisson distribution, as expected. In
contrast, use of actual labels produced a U-shaped distribu-
tion, with a substantially larger proportion of CpGs always
appearing in the top 100 (Supplemental Table 3, available
online, gives the genes that are intersected by these consis-
tently differentially methylated CpGs).
1392
We repeated the classifier training and evaluation
described previously, this time using only the top 50, 1,000,
50,000, or 400,000 differentially methylated CpGs in the
training data to compute Euclidean distances. Receiver oper-
ating characteristic curves for each are displayed in Figure 3E;
these show a clear advantage to classification using fewer
features. We took this process a step further by training a
range of models using the b-values for the selected CpGs as
features (rather than Euclidean distance between samples).
Using a bagged cost-sensitive support vector machine (see
Materials and Methods section), we were able to identify
IVF patient samples with a positive predictive value of 99%,
and a sensitivity of 82%; receiver operating characteristic
curves are shown in Figure 3F.

When we applied the same approach to identifying differ-
entially methylated CpGs for good vs. poor-quality—embryo
samples (using purified samples, as these showed greater sep-
aration in our earlier clustering analysis), we found no signif-
icant CpGs after correction for multiple hypothesis testing
(Supplemental Fig. 2A, available online). Further, the distri-
bution of P values derived from the actual and shuffled labels
did not exhibit the differences observed for IVF patient and
donor samples (Supplemental Fig. 2B).
VOL. 104 NO. 6 / DECEMBER 2015



FIGURE 2

Gradient purification improves separation of good- and poor-quality sperm samples. (A) Hierarchic clustering of 62 gradient-purified sperm samples
based on global methylation profile; 2 clear clusters are apparent, 1 of which contains almost exclusively poor-quality–embryo samples. (B) The ROC
curve is shown (left), for prediction of patient status (IVF patient or fertile donor) from the 62 gradient-purified samples. Classification was
performed by building a 1-level decision tree (Supplemental Methods) based on Euclidean distance between samples. Training and testing is
performed using 10-fold cross-validation. The same information is shown (right) for the task of predicting embryo quality from the subset of 45
samples for which this information is known. Although classification of patient status is degraded from that with unpurified samples, the ability
to predict poor-quality embryos is markedly improved. (C) Classification statistics for the ROC curves presented in (B). Samples were predicted
as positive (i.e., a patient sample or a poor-quality–embryo sample) when the probability exceeded 50%. In the case of predicting poor-quality
embryo, very high specificity and positive predictive value are achieved. AUC ¼ area under the curve; FP ¼ false positive; NPV ¼ negative
predictive value; PPV ¼ positive predictive value; Se. ¼ sensitivity; Sp. ¼ specificity.
Aston. Sperm DNA methylation and infertility. Fertil Steril 2015.
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As with the DMPs in the neat samples for fertility status,
no bias occurred toward regions with any particular annota-
tion category; however, in contrast to the comparison of IVF
patients with donors, we saw no tendency for any DMPs to
consistently appear in the top 100 when we repeated the
feature selection with portions of the data held out, as we
did previously (Supplemental Fig. 2C and D). In the training
of distance-based classifiers as previously described, we
observed that using more CpGs resulted in higher and
more-stable specificity and positive predictive value, whereas
no discernible pattern in performance was apparent with use
of a reduced set of features (Supplemental Fig. 2E).

One interpretation of this result is that the poor-quality–
embryo samples we are able to differentiate using Euclidean
distances create genomewide changes in DNA methylation.
However, because we have fewer purified samples, we addi-
tionally have reduced statistical power in this setting. More-
over, the platform we have employed here does not give a
whole-genome interrogation of methylation. Further studies,
including whole-genome bisulfite sequencing, are necessary
to more fully explore this finding.
VOL. 104 NO. 6 / DECEMBER 2015
Do Changes in DNA Methylation in CpGs or
Promoter Regions Affect Functionally Related
Genes?

To better understand biological processes and pathways that
are affected by the observed changes in DNA methylation,
we ranked genes by the number of CpGs that were identified
as differentially methylated within their promoter regions (�5
kb around the transcription start site) and performed gene
ontology analysis on the top 1,000 genes. In all cases (both
purified and neat samples for IVF patient vs. fertile donor
samples, and good- vs. poor-quality–embryo samples) we
observed significant enrichment for genes involved in cell
adhesion and morphogenesis (Fig. 4A). Additionally, several
gene families associated with embryogenesis and develop-
ment are differentially methylated in the good vs. poor
embryogenesis groups.

Following up on this finding, we combined P values
within promoter regions for differential methylation between
purified good- and poor-quality–embryo samples to generate
a single P value for differential methylation of each gene. We
found that the set of differentially methylated genes identified
1393



FIGURE 3

Differential methylation between healthy donor and infertile IVF patient samples consistently occurs at a limited number of CpGs. (A) Number of
differentially methylated CpGs for unpurified donor vs. IVF patient samples before and after correction for multiple hypothesis testing, using both
the actual donor/patient labels and randomly shuffled donor/patient labels as a control. (B) Distribution of P values for all profiled CpGs from tests of
differential methylation between donor and IVF patient samples using both actual labels and randomly shuffled donor/patient labels as a control. (C)
Proportion of differentially methylated CpGs (before correction for multiple hypothesis testing) that fall within regions annotated as shown, both
actual donor/IVF patient labels and randomly permuted labels. (D) Samples are split into 10 stratified, equal-size groups. A fold is formed by taking 9
of these groups and leaving 1 group out (allowing 10 separate analyses). For each fold, we use the samples in the 9 retained groups to identify
differentially methylated CpGs using both actual donor/IVF patient labels and randomly permuted labels as a control. A histogram showing the
number of CpGs that were contained in the top 100 most differentially methylated CpGs identified in only 1 fold, exactly 2 folds, exactly 3
folds, and so on, is displayed. The inset shows the number of CpGs contained in all 10 folds, for both actual labels and permuted labels in
higher detail. (E) Classifiers, analogous to those in presented in Figure 2 were trained using a subset of the top 50, 1,000, 50,000, and
400,000 most significantly differentially methylated CpGs. The ROC curves are plotted for each. (F) A range of classifiers was trained on the
top 500 most differentially methylated CpGs; shown are the ROC curves from these classifiers.
Aston. Sperm DNA methylation and infertility. Fertil Steril 2015.
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in this way contained 25 imprinted genes, accounting for
close to 10% of known imprinted genes. As a control, we
randomly permuted the labels on these samples and repeated
the analysis; only 1 imprinted gene was identified as differen-
tially methylated after permutation testing (Fig. 4B).
DISCUSSION
The current study evaluated genomewide sperm DNAmethyl-
ation patterns in a relatively large cohort of normozoosper-
mic, fertile men serving as a control group, and men
undergoing IVF, in an effort to evaluate predictability of
fertility status and IVF success based on the sperm DNAmeth-
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ylome. The current study has several important limitations.
Replication with a larger control group of less-select fertile
men, as well as a larger patient cohort, is required to confirm
the findings presented here.

In particular, the comparison of methylome signatures
using neat samples vs. density gradient–prepared samples,
showed that methylation profiles of purified samples were
more predictive of embryo quality, whereas those of neat
samples were more predictive of fertility status. This finding
is intriguing. Purification, in addition to selecting for
more-competent sperm, may in addition eliminate immature
or incompletely compacted sperm that could indicate poor
fertility, possibly accounting for this difference. However,
VOL. 104 NO. 6 / DECEMBER 2015



FIGURE 4

Functional classification of differentially methylated genes. (A) Gene ontology analysis of the top 1,000 genes after sorting genes by number of
differentially methylated CpGs. All terms that were significant (correct P value <.05), in comparing either IVF patients with fertile donors, or
good- and poor-embryogenesis IVF, patient samples are included, with the exception of 24 terms associated with gene expression and cellular
metabolism, which are omitted for clarity of visualization (full list is provided in Supplemental Table 3, available online). (B) The absolute
number and proportion of genes with differentially methylated promoter regions (P<.01, Wilcoxon’s signed rank test, purified samples) that
are known to be imprinted.
Aston. Sperm DNA methylation and infertility. Fertil Steril 2015.
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with fewer samples, power in the purified case is reduced,
thereby decreasing identification of more-subtle effects, and
making direct comparison of results from purified vs. neat
samples difficult.

Another limitation of this study was the challenge of clas-
sifying good vs. poor embryogenesis cases and minimizing
inclusion of potentially contributing female infertility factors.
Embryogenesis is a complex process, and ‘‘poor embryogen-
esis’’ can be manifested in several ways, including develop-
mental arrest or attrition at any point during embryonic
development, and poor implantation. Moreover, embryogen-
esis is rarely homogeneous within a cohort of oocytes.
Although we made every attempt to select the most-
extreme cases (best and worst) while avoiding severe female
infertility factors, the cases we selected for the study were het-
erogeneous by virtue of the inherent complexities of fertiliza-
tion and embryogenesis.

As illustrated in Supplemental Table 1 (available online),
although semen parameters and male and female age did not
differ between groups, the poor-embryo, negative pregnancy
group had, on average, fewer oocytes, metaphase II oocytes,
and normally fertilized oocytes. This finding suggests that
cryptic overrepresentation of female infertility factors may
have occurred in this group and not in the others. Although
these differences are not ideal, they are not expected to affect
specificity; assuming sufficient signal for model training, the
presence of female factor samples would be expected to result
VOL. 104 NO. 6 / DECEMBER 2015
in an increased false-negative rate, thereby reducing
sensitivity.

Although the predictive power of this approach for clas-
sifying fertile and patient samples is remarkably high in this
study, the control samples were from carefully screened, nor-
mozoospermic, fertile sperm donors, which do not represent
the general population, or even the fertile general population.
Future studies should include more-representative samples.

To our knowledge, this study is the largest on genome-
wide sperm DNAmethylation performed to date. Our findings
that sperm DNA methylation patterns are generally very sta-
ble across samples from different individuals and across
sperm fractions from the same individual are in agreement
with those of smaller genomewide sperm DNA methylation
studies (44, 45, 47, 48).

This study addressed 2 fundamental questions regarding
the prognostic value of sperm DNA methylation patterns
in the context of male infertility. We first aimed to evaluate
the power of sperm DNA methylation patterns, to distinguish
normozoospermic, fertile men from infertile men. Second,
we investigated the utility of sperm DNA methylation data
for predicting IVF outcomes. Our findings suggest that
methylation patterns are highly predictive of fertility status,
and quite predictive of IVF embryo quality.

Several relevant, and probably biologically informative,
differences were found in the power of methylation data to
predict fertility status vs. IVF embryo quality. The primary
1395
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difference is the methylation signature for each group. Our
analyses demonstrated that no individual CpG displayed
significantly different methylation in good- vs. poor-qual-
ity–embryo groups, after correcting for multiple comparisons.

Predictive power was poor when we trained models based
on a selected set of features (CpGs), rather than on global pro-
files. As we increased the number of CpGs for the predictive
models, the predictive power increased (Supplemental
Fig. 2, available online). This result suggests that although
poor embryogenesis cannot be attributed to a few consistently
altered CpGs, the genomewidemethylation profile seems to be
inherently different in men in the poor-quality–embryo
group.

Another informative result is that with density gradient–
purified samples, power to predict good vs. poor embryo qual-
ity was significantly improved. Although the reason is
unclear, the purification step may have reduced background
methylation heterogeneity by eliminating less-competent
sperm that, although present in the sample, are unlikely to
play a role in fertilization or embryogenesis. This process
may thereby have the effect of improving the overall methyl-
ation signatures of the 2 groups. The methylation differences
in good- vs. poor-embryogenesis samples may be subtle, and
dispersed throughout the genome. Additional studies,
including whole-genome assays, are necessary to further
our understanding of methylation effects.

In contrast, comparison of sperm methylomes of fertile
men vs. IVF patients revealed, after multiple-comparison
correction, >8,500 CpGs that had significantly different
methylation. We employed the same strategy for predictive
modeling that was used to classify patients with good- vs.
poor-quality embryos. In this case, probably driven by the
large number of highly differentially methylated CpGs, we
found that models were most effective at classifying samples
when they were classified using only those CpGs with the
most significant methylation differences (Fig. 3). In a compar-
ison of those in the control group vs. IVF patients, whole ejac-
ulate proved much more effective at classifying samples than
did the evaluation of methylation in purified samples; howev-
er, this difference may be a result of the small number of pu-
rified samples in the control group.

Evaluation of the genomic context of the methylation al-
terations, as well as the gene classes affected by differential
methylation between groups, indicated no enrichment for
differential methylation within a specific genomic context
(Figs. 3C and Supplemental Fig. 2). Gene ontology analysis
indicated highly significant enrichment for several functional
classes of genes (Fig. 4). Most notably, genes involved in
cellular adhesion were significantly overrepresented among
differentially methylated CpGs, for all comparisons. Although
we can only speculate about the relevance of this finding, cell
adhesion is known to be critical for both embryogenesis (58,
59) and sperm-oocyte fusion (60, 61).

Genes involved in cellular morphogenesis and differenti-
ation were overrepresented in the good vs. poor embryogen-
esis comparison, and to a lesser extent, in the IVF vs. fertile
donor comparison. We found that imprinted genes were
significantly over-represented among the list of differentially
methylated genes in a comparison of good vs. poor embryo-
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genesis samples. This enrichment was not detected in compar-
ison of IVF patients and fertile donors. This is primarily
apparent with purified samples and may explain our observa-
tion that methylation status was more strongly related to em-
bryo quality in purified samples; or, these differences may be
subtle changes that are masked by other elements in the un-
purified samples.

In conclusion, multiple studies have identified differences
in sperm DNAmethylation at single loci, most often imprinted
genes, in normozoospermic vs. infertile men, and a few small
studies have used array-based approaches to identify sperm
DNA methylation differences between the 2 groups. However,
this study is thefirst to exploit the observed differences to build
models predictive for fertility status. The findings presented
here provide an exciting and potentially clinically useful
metric for assessment of male infertility. Additional studies
are needed, to replicate the findings presented here, and to
evaluate the generalizability of the present findings in a larger
cohort of fertile and subfertile populations.
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SUPPLEMENTAL FIGURE 1

Hierarchic clustering of methylation profiles for the 44 IVF patients for which both purified and unpurified samples were processed (i.e., 88 samples
are plotted). For each unpurified sample, its nearest neighbor is the purified sample from the same patient.
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SUPPLEMENTAL FIGURE 2

Differential methylation between purified good and poor embryogenesis samples is not defined by a small group of consistent single-CpG
differences. (A) Number of differentially methylated CpGs of purified good vs. poor embryogenesis samples before and after correction for
multiple hypothesis testing, using both the actual good/poor labels and randomly shuffled good/poor labels as a control. (B) Distribution of P
values for all profiled CpGs from test of differential methylation between good and poor embryogenesis, using both actual labels and randomly
shuffled good/poor labels as a control. (C) Proportion of differentially methylated CpGs (before correction for multiple hypothesis testing) that
fall within regions annotated as shown, both actual good/poor embryo quality labels and randomly permuted labels. (D) Samples are split into
10 stratified, equal-size groups. A fold is formed by taking 9 of these groups and leaving 1 group out (allowing 10 ways of doing this). For
each fold, we use the samples in the 9 retained groups to identify differentially methylated CpGs, using both actual good/poor embryogenesis
labels and randomly permuted labels as a control. A histogram showing the number of CpGs that were contained in the top 100 most
differentially methylated CpGs identified in only 1 fold, exactly 2 folds, exactly 3 folds, and so on, is shown. (E) Classifiers, analogous to those
in presented in Figure 2, were trained using a subset of the top x most differentially methylated CpGs (where x is varied along the x-axis of the
plots), and the sensitivity, specificity, positive predictive value, and negative predictive value of each was evaluated as a function of how many
CpGs were selected.
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SUPPLEMENTAL TABLE 1

General composition of the study groups, including semen parameters and IVF embryo quality.

Variable Good embryos, pregnant Poor embryos, not pregnant Poor embryos, pregnant P value

Male age (y) 33.08 5.97 32.98 4.29 33.15 5.03 .9913
Sperm concentration (M/ml) 58.58 62.78 69.31 77.13 76.26 71.60 .4527
Progressively motile sperm (%) 45.00 20.15 42.64 18.29 43.44 24.86 .8867
Female age (y) 30.93 4.52 32.60 5.12 30.98 4.51 .242
Eggs retrieved, n 14.07 5.91 10.47 4.13 12.98 4.72 .0103
MII eggs, n 12.09 5.15 8.87 3.89 11.29 3.83 .0073
Eggs fertilized normally, n 10.74 4.82 7.23 3.33 9.26 4.00 .0019
Embryos cryopreserved, n 4.21 3.10 0.26 1.16 0.81 1.55 < .0001
Fertilized eggs Rlevel 2: 6-cell on day 3 (%) 0.73 0.23 0.37 0.30 0.45 0.30 < .0001
Fertilized eggs Rlevel 2: early blast on day 5/6 (%) 0.44 0.18 0.07 0.09 0.13 0.15 < .0001
Embryos transferred, n 2.04 0.55 2.17 0.80 2.34 0.53 .0596
Note: P values are from ANOVA. Values for each embryo/pregnancy category are mean followed by SD.
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SUPPLEMENTAL TABLE 2

Frequency of male and mild female factors in 127 IVF patient-couples.

Factor
Good embryogenesis, positive

pregnancy (n [ 53)
Poor embryogenesis, negative

pregnancy (n [ 31)
Poor embryogenesis, positive

pregnancy (n [ 42)

Male factor only 15 12 14
Female factor only 16 13 17
Male and female factor 16 3 6
Idiopathic (unexplained) 6 3 5
Endometriosis 10 3 10
Diminished ovarian reserve 2 5 3
Polycystic ovary syndrome 8 3 3
Note: No significant differences were observed among groups.

Aston. Sperm DNA methylation and infertility. Fertil Steril 2015.

VOL. 104 NO. 6 / DECEMBER 2015 1397.e4

Fertility and Sterility®



SUPPLEMENTAL TABLE 3

Genes that overlap CpGs consistently in the top 100 most
differentially methylated CpGs, in comparison of unpurified donor
vs. IVF patient samples.

Gene

AHDC1
ALOX5AP
BTBD17
CXXC11
EEF1A2
FBLN2
FGF18
GRM6
HIST1H4J
HIST1H4K
INPP5A
JAG2
KCNQ1
KIAA0319L
LRRC45
MIR4734
MLLT6
MTMR6
MXRA7
NCDN
NDUFS6
NDUFS8
OGFOD2
PSTPIP1
RAP1GAP2
SERPINF2
STRA13
SYT8
TCIRG1
TNNI2
USP24
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