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Abstract 

Background:  Partially methylated domains (PMDs) are a hallmark of epigenomes in reproducible and specific bio-
logical contexts, including cancer cells, the placenta, and cultured cell lines. Existing methods for deciding whether 
PMDs exist in a sample, as well as their identification, are few, often tailored to specific biological questions, and 
require high coverage samples for accurate identification.

Results:  In this study, we outline a set of axioms that take a step towards a functional definition for PMDs, describe an 
improved method for comparable PMD detection across samples with substantially differing sequencing depths, and 
refine the decision criteria for whether a sample contains PMDs using a data-driven approach. Applying our method 
to 267 methylomes from 7 species, we corroborated recent results regarding the general association between replica-
tion timing and PMD state, and report identification of several reproducibly “escapee” genes within late-replicating 
domains that escape the reduced expression and hypomethylation of their immediate genomic neighborhood. We 
also explored the discordant PMD state of orthologous genes between human and mouse, and observed a direc-
tional association of PMD state with gene expression and local gene density.

Conclusions:  Our improved method makes low sequencing depth, population-level studies of PMD variation pos-
sible and our results further refine the model of PMD formation as one where sequence context and regional epig-
enomic features both play a role in gradual genome-wide hypomethylation.
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Background
DNA methylation is associated with a variety of gene 
regulatory functions in mammals, working in concert 
with histone marks to stably repress transcription. Early 
studies of DNA methylation in cancer discovered a glob-
ally reduced level of methylation, compared to healthy 
tissue analogues [1, 2]. The development of modern 
whole-genome bisulfite sequencing (WGBS) allowed for 

a high-resolution and full-genome view of DNA meth-
ylation. One of the most striking features to emerge 
from the first application of this technique in mammals 
were partially methylated domains (PMDs), which were 
observed in a human lung fibroblast cell line but not in 
embryonic stem cells [3]. Subsequent studies found these 
broad domains of reduced methylation to be prevalent 
in cancer methylomes [4, 5], and we can now attribute 
the aforementioned global hypomethylation observed in 
early cancer studies to this phenomenon. Further WGBS 
studies have established PMDs as a universal feature in 
methylomes of cancers and cultured cells [6–8]. When 
they exist, PMDs can cover as much as half the genome, 
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with many contiguous domains larger than 1 megabase 
[8]. In addition to cancers and cultured cells, PMDs have 
been identified in the placenta at multiple developmental 
stages and in several species [9–11].

An increasing number of studies have uncovered sev-
eral genomic and epigenomic features associated with 
PMDs. They generally reside in gene-sparse genomic 
locations and coincide with lamina-associated domains 
and late-replicating regions [5, 7]. Despite this general 
trend, their locations show some degree of cell-type 
specificity [9, 12]. Boundaries of PMDs are enriched for 
genomic regulatory features including promoters and 
insulators [5], often containing or defined by CTCF sites 
[13]. CpG island methylation inside PMDs is pronounced 
in many cancers [14] and subtle but significant in pla-
centa [11], though it is unknown whether this methyla-
tion occurs via the same underlying mechanisms as in 
cancer methylomes. PMDs in a breast cancer cell line 
largely overlap genomic regions occupied by histone 
modifications H3K9me3 or H3K27me3 [7], suggest-
ing a link between PMDs and repressive chromatin that 
has been further validated by association of PMDs with 
repressive chromatin states identified by ChromHMM 
[13].

PMDs can be reliably produced by immortalizing 
human B-lymphocytes with Epstein–Barr virus (EBV; 
[8]), and can be erased by inducing pluripotency [6]. 
There is mounting evidence that PMD formation is 
related to imperfect maintenance of methylation during 
mitotic replication, and that certain sequence contexts 
are more susceptible to this imperfect maintenance than 
others. Gaidatzis et  al. [15] was the first to suggest that 
different sequence contexts inside PMDs could explain 
some of the variation in methylation levels. Recently, 
Zhou et al. [16] showed that that widespread hypometh-
ylation of CpGs in the WCGW context occurred in all 
tissues as a function of mitotic age, and that these CpGs 
occurred more frequently in regions likely to contain 
PMDs. This, coupled with new knowledge that hemi-
methylated states can persist for quite some time in 
nascent DNA and failure to remethylate these nascent 
strands before the next round of replication leads to 
long-term loss of methylation at that CpG site provides a 
possible model for PMD formation [17].

A major downside of current research on PMDs are the 
inconsistent methods used to decide whether a sample 
has PMDs and the ad hoc identification of PMDs in those 
samples. In almost all studies on PMDs, some degree of 
manual inspection of the methylation levels in a genome 
browser or looking for a bimodal distribution of meth-
ylation in windows is used to decide whether a sample 
contains PMDs or not. In this study, we outline a set of 
axioms useful to more precisely define PMDs, describe 

an improved method for PMD identification, and impose 
data-driven cutoffs on the number and size of segments 
that allow for identification of PMD-containing samples 
independent of the biological correlates or mechanisms 
underlying PMD formation.

We used these improved methods to segment 267 
methylomes from 7 species and characterized the fea-
tures of PMDs and their boundaries. We observed line-
age-specific enrichment of repeat elements at boundaries 
and confirmed the well-known association of transcrip-
tion start and end sites with our improved PMD bound-
aries. Analysis of the size and depth of conserved PMD 
regions across contexts supports a model of progressive 
PMD formation over time. We showed that while PMDs 
were generally associated with late-replicating regions, 
there were a set of highly methylated genes we termed 
“escapees” that evaded their surrounding PMD state and 
remained highly expressed regardless of their replication 
time. Lastly, we used syntenic blocks between mouse and 
human to explore the relationship between sequence and 
PMD state, and observed that differential PMD state over 
orthologous genes was directionally linked to differences 
in gene expression and local gene density, with the PMD 
occurring over the ortholog with lower expression and 
local gene density. Taken together, our novel methodol-
ogy and analysis serve to clarify the contexts in which 
PMDs exist, improve their identification in experiments 
with low sequencing depths, and further elucidate the 
complex relationship between gradual loss of methyla-
tion, sequence, and replication timing.

Results
Refining the definition of partially methylated domains
Previous studies have frequently pointed out how easily 
one can see PMDs when visualizing DNA methylation 
along chromosomes, assuming the scale is appropriate 
(e.g., several megabases). Unfortunately, to date PMDs 
have no functional definition. Statistical definitions based 
on methylation data have, in almost all cases, been tied 
to procedures for identifying the PMDs. Here we out-
line a set of necessary properties of PMDs that capture 
the key observations of previous studies. Importantly, 
these properties make no reference to genome annota-
tions or properties of the underlying DNA sequence. This 
is important in avoiding biases in subsequent analysis of 
PMDs, for example in identifying features that correlate 
with PMDs.

We claim that the following properties are essential to 
defining PMDs:

•	 they have a lower methylation level than the rest of 
the genome;
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•	 they cover a fraction of the genome that is distinctly 
larger than the fraction associated with regulatory 
features (e.g., CGIs, promoters, enhancers, etc.);

•	 and they are organized as contiguous genomic inter-
vals whose size is distinctly larger than the size of the 
aforementioned regulatory features.

The reduced methylation level in PMDs has been 
assumed by all previous studies. The description of 
PMDs as being “partially” methylated can be mislead-
ing, as we will show, but is often the case since the rest of 
the genome tends to be highly methylated in most mam-
malian cells. Regarding the total fraction of the genome 
covered by PMDs, previous studies have reported a range 
of 20–65% of the genome covered. Despite the differ-
ences in methods used to obtain these numbers, the scale 
is consistent. The organization of PMDs as contiguous 
intervals having a particular size distribution has also 
been common to all previous studies. This is apparent in 
the use of large bins (e.g., 10 kb; [5] and 20 kb; [10]) and 
in the care taken for these intervals not to be fragmented 
by features like CpG islands [12].

Existing reports have found substantial overlap 
between the portions of the genome covered by PMDs 
in different methylomes [5, 6]. Should it result from a 
shared underlying cause, it would be desirable for our 
definition to recapitulate this concordance without forc-
ing it. At the same time, the definition of PMDs should 
form the basis for determining whether or not a methyl-
ome contains PMDs. For a variety of reasons, large inter-
vals of reduced DNA methylation exist in methylomes 
that, on a global level, do not appear to have PMDs. One 
example are HOX clusters in embryonic stem cells, each 
of which are overlapped by tightly co-located regions of 
hypomethylation. Another example is pericentromeric 
satellites in human sperm, which appear to have a dis-
tinct chromatin structure leading to their hypomethyla-
tion during meiosis [18].

Previous studies have applied PMD detection meth-
ods to all samples of interest and then used the features 
of their segmentation to decide whether each sample 
contained PMDs or not. For example, Lister et  al. [6] 
observed an order of magnitude difference in the total 
length of segmentation between the cell lines with and 
without PMDs, and used that to determine which lines 
had PMDs. Similarly, Berman et  al. [5] claimed PMDs 
are absent from hESCs and primary normal colon based 
on a low fraction of the genome found to be covered 
by PMDs using their sliding window approach. While 
this method of deciding whether PMDs exist or not in 
a sample is inherently circular, the clear divide between 
segmentations in PMD-containing and non-PMD-con-
taining methylomes has allowed it to endure as a reliable 

decision criteria, and is the approach we take in subse-
quent sections when deciding whether or not a sample 
contains PMDs.

Improving PMD identification through dynamic bin size 
selection
In this manuscript, we present an improved PMD iden-
tification method based off of methpipe’s original PMD 
detection method [19] and then apply it to a large 
number of samples. This method is a two-state hidden 
Markov model (HMM) that segments non-overlapping 
bins of the genome into one of two states: PMD or back-
ground. The distributions of methylation levels in these 
two states are modeled with beta-binomial distributions 
and the transition and emission parameters of the model 
are learned through the Baum–Welch algorithm. PMDs 
are segmented via posterior decoding and boundaries 
are heuristically sharpened to single-basepair resolu-
tion (see Additional files 1, 2 for a description of our 
improved heuristic). Lastly, false discovery correction fil-
ters out small PMDs by segmenting a shuffled version of 
the methylome and comparing the size distribution of the 
resulting segments with the unshuffled segments.

A key technical challenge in accurate comparison of 
PMDs across many samples from different studies is 
the bias introduced by variable sequencing depth. As 
sequencing depth decreases, the fraction of bins in the 
genome with methylation observations decreases, and 
the accuracy of the methylation estimation inside those 
bins deteriorates as the observed value discretizes. A 
natural approach to reducing this bias is to vary the size 
of these binned regions on a sample-by-sample basis to 
equalize the amount of information used to do the seg-
mentation. We defined the minimum amount of “suffi-
cient” information in a bin as 40 observations: whether 
that is 40 observations of a single CpG or single obser-
vations of 40 CpGs. 40 observations corresponds to an 
80% confidence interval around an observed methylation 
level of 50% that ranges from 39% to 61%, which allows 
us to safely interpret the methylation level in a bin as at 
least being low, medium, or high. Before segmentation 
occurs, we choose the minimum bin size that yields at 
least 40 observations in 80% of all bins genome wide. We 
observed that the majority of human samples in Meth-
Base were sequenced deeply enough to hit the above cri-
teria with the default bin size of 1000 basepairs. However, 
most PMD-containing mouse samples were sequenced 
shallowly enough that bin size adjustment affected our 
segmentation.

Figure  1a shows the performance of our dynamic bin 
size method against the fixed bin approach published in 
methpipe and MethylSeekR’s PMD function [20]. In the 
first example, all three samples are highly covered and 
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therefore the fixed and dynamic bin estimates are very 
similar and perform well, with the beta-binomial emis-
sion distributions performing flexibly enough to model 
the very low methylation levels of Calu1 PMDs and sub-
tle methylation differences of the healthy liver sample 
(which has recently been identified as having PMDs else-
where [13]). MethylSeekR performs well when methyla-
tion levels inside PMDs are near 0.5 and arguably when 
they are very subtly lower than the background, as in 

liver, but struggles when PMDs methylation levels are 
very low, as in the Calu1 lung cancer cell line.

Because we do not know the underlying process 
involved in generating PMDs, it is impossible to compare 
methods against a ground truth, simulated or otherwise. 
However, we can explore the ability of each method to 
segregate PMDs identified in a cell-type specific man-
ner. Figure  1b, c shows the normalized Jaccard indi-
ces between pairs of tumor samples from The Cancer 
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Fig. 1  Comparison of PMD identification methods. a Comparison of PMD estimates from all three methods on chromosome 6 for three samples 
with substantial variation in PMD depth. b Pairwise Jaccard index distributions comparing within-cancer-type and between-cancer-type for 
PMD sets identified using each method. c Pairwise Jaccard index heatmaps of TCGA cancer sample PMDs identified by each method. d Effect of 
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Genome Atlas (TCGA) for each of the three methods. 
While MethylSeekR has the highest mean pairwise Jac-
card index, the dynamic bin method shows the largest 
difference in pairwise Jaccard index for pairs of PMD sets 
coming from the same cancer type vs different cancer 
types.

Figure  1d shows the performance of each method in 
extremely low-coverage situations by downsampling. We 
took a sample from MethBase with very low sequencing 
depth (50% CpGs covered to 1× depth) and randomly 
downsampled observations to 90, 80, ... 10% of the origi-
nal levels. From the manual, MethylSeekR is not recom-
mended for use on samples below 10× sequencing depth 
and performs poorly as a result. The fixed bin methpipe 
method performs well at 1× sequencing depth, but suf-
fered from significant erosion of PMD estimates as we 
downsampled. We show that our method yields consist-
ent PMDs even in the face of extremely low coverage, 
facilitating future study of PMDs in high-throughput, 
low-coverage sequencing experiments.

To further show that our variable bin size selection 
improves the stability of our PMD estimates, we down-
sampled methylation observations from several sam-
ples, segmented the downsampled methylomes using 
both a fixed 1-kb bin size and dynamically selected bin 
size, and computed the Jaccard index with the full-cov-
erage PMD segmentation (Fig. 1e). For each sample, we 
downsampled 9 times: randomly selecting 10%, 20%, ..., 
90% of the methylation observations to retain. The result-
ing plots show that our dynamic bin size selection sig-
nificantly improves PMD stability in very low-coverage 
samples by maintaining the segmentation closer to what 
would be achieved with higher sequencing depth. Inter-
estingly, even with the updated method, we fail to iden-
tify accurate PMDs in two samples with the shallowest 
PMDs (human liver and human H1 mesenchymal cells) 
until mean CpG sequencing depth exceeds 10×, possibly 
explaining why PMDs were not observed in these sam-
ples until recently.

Data‑driven refinement of the PMD decision criteria
To discern those methylomes that contain PMDs from 
those that do not, we applied our improved method for 
PMD detection to a wide range of newly sequenced and 
public methylomes currently curated in MethBase and 
TCGA, regardless of whether or not they have been stud-
ied in the context of PMDs, and without ascribing a prior 
on whether they should or should not have PMDs (Addi-
tional file 1:  Tables S1, S2). Samples were manually anno-
tated as either healthy or cancer, primary or cultured, and 
with their approximate cell type. To distinguish between 
PMD-containing (PC) and non-PMD-containing (non-
PC) methylomes, we calculated summary statistics based 

on the properties described in the previous section for 
each sample. Figure 2a shows the fraction of the genome 
segmented and the mean size of the segmented regions 
for all samples analyzed. In all species, there is an inflec-
tion point at which both the mean size of segments and 
total fraction of the genome segmented increases. For the 
fraction of the genome segmented, the fraction jumps 
abruptly from roughly 5% (which corresponds well to 
the fraction of basepairs inside regulatory regions such 
as gene promoters and CpG islands) to over 10%. At the 
same time, the mean segment size changes from tens 
of kilobases to over a hundred. We used these metrics 
(fraction segmented > 5% , mean segment size > 50kb) 
as cutoffs to distinguish PC methylomes from non-PC 
methylomes for the remainder of the study. Our dynamic 
bin size selection method was critical to selecting these 
cutoffs in a way that was not influenced by varying 
sequencing depth. Figure 2b shows the bin sizes selected 
for segmentation of each PC methylome along with its 
sequencing depth. Over half of the PMD-containing 
samples were segmented using a bin size larger than the 
default of 1000 bp.

After establishing cutoffs, it was clear that there was a 
substantial difference not only in segment size and fre-
quency but also location in PC samples and non-PC 
samples. Figure 2c shows a full-chromosome view of the 
resulting segmentation for all human PC and non-PC 
methylomes. For each non-overlapping 50-kb region, 
we colored by the fraction of that region segmented, 
and observed strong anti-correlation between large seg-
ments in PC samples and gene density. Some of the larg-
est segments in non-PC samples came from centromeric 
regions, which were also segmented in PC samples, and 
HOX clusters, which were frequently not segmented in 
PC samples and are likely the result of extended enhancer 
activity in those regions (Additional file  2: Figure S1). 
Almost all PC samples fell into the categories of cancer, 
cultured cell line, or placenta, with some notable excep-
tions. We corroborated recent results observing PMDs in 
the human liver [13] and highly divergent but reproduc-
ible PMDs in mouse oocytes [10] (Additional file 2: Fig-
ure S2).

Segmentation suggests gradual PMD expansion 
and conservation of PMD features across species
Analysis of PMD location overlap with other genomic 
features revealed significant depletion of genes inside 
PMDs with a median observed/expected ratio of 0.67 
(FDR adjusted p < 0.05 , two-tailed binomial test, Addi-
tional file 1:  Table S3A), corroborating previous results 
[5]. Additionally, we observed lineage-specific enrich-
ment of LTR families in primate PMDs, and depletion 
of nearly all SINE families inside PMDs across species 
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(Figure  3A & Additional file  1:  Table  S3B/C)). PMDs 
were observable in non-CpG methylation as well, sug-
gesting differential accessibility of PMD regions by 
Dnmt3a in PC samples vs non-PC samples (Additional 
file 2:  Figure S3).

Using all 76 PC human methylomes, we observed that 
PMD boundaries significantly co-occur with short seg-
ments of high CpG density (FDR adjusted p < 0.05 , two-
tailed binomial test, Fig.3b , Additional file 1: Table SA), 
separate domains of high and low CpG density, and that 
methylation levels inside PMDs increase towards PMD 
boundaries. This trend is conserved across species (Addi-
tional file  2: Figure S4). Elevated CpG density at PMD 
boundaries was primarily driven by significant enrich-
ment of transcription start and end sites (TSSs and TESs) 
at PMD boundaries FDR adjusted p < 0.05 , two-tailed 
binomial test, Additional file 1: Table S4A). TSSs at PMD 
boundaries displayed a directional affinity for genes tran-
scribing away from the PMD (Fig.  3c). In samples with 

available CTCF binding data, we observed significant 
enrichment of CTCF bound sites with PMD boundaries 
(FDR adjusted p < 0.05 , two-tailed binomial test, Addi-
tional file 2: Figure S5, Additional file 1: Table S4B).

We observed only modest enrichment or depletion 
of repeat families at boundaries relative to the whole 
genome, but there were substantial family-specific ten-
dencies towards being included or excluded in the PMD 
if an element occurred at the boundary. We plotted rela-
tive enrichment at the boundary using the difference 
in observed/expected ratios for the 5 kb inside vs 5 kb 
outside the PMD boundary for each family (Additional 
file 2:  Figure S6). In primate species, Alu elements were 
preferentially excluded from PMDs, with the magnitude 
of this exclusion positively correlating with the age of 
the Alu subfamily. Interestingly, other lineage-specific 
SINE elements such as the SINEC family specific to dog 
and equine repeat element (ERE) family specific to horse 
showed similar exclusion at PMD boundaries.
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Next we sought to understand how regional conser-
vation of PMD state across many samples could inform 
on the progressive appearance and deepening of meth-
ylation loss. For every 50-kb bin in the genome that over-
lapped completely with a PMD in at least one sample, we 
plotted the number of samples it had a PMD in against its 
methylation level. We observed that the more conserved 
a PMD is across samples, the lower its methylation 

level (Fig.  3d, β = −1.703e-03, adjusted r2 = 0.1698 , 
p < 2.2e − 16 ). This could reflect an ordering, whereby 
some PMD-covered regions become detectable earlier in 
their development and have lost more methylation than 
others over time.

One additional place we explored relative depths of 
methylation loss was comparing primary cancer sam-
ples with their tissue-matched cultured cancer cell line 
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counterparts. We plotted the methylation distribution 
inside PMDs for cultured vs primary cancer samples, 
with the assumption that on average, cultured cancer cell 
lines will have a longer mitotic history than matched-
tissue primary tumor samples (Fig.  3e). Cultured can-
cer samples had lower average methylation levels inside 
PMDs than their same-cancer primary tissue counter-
parts. To minimize the possibility of these differences 
occurring due to stromal composition of primary tumors, 
we explored the relationship between tumor purity and 
PMD prevalence in TCGA primary tumor samples and 
observed no correlation (Additional file  2:  Figure S7). 
This result, while it would benefit from validation in a 
more purpose-built experiment, points to gradual meth-
ylation loss over multiple rounds of mitotic cell division.

Some genes escape hypomethylation and reduced 
expression in late‑replicating regions
We observed a strong link between late replication tim-
ing and PMD state, corroborating previous results [5] 
(Fig.  4a). PMD boundaries showed significant overlap 
with chromatin loop boundaries in GM12878 and IMR90 
( p < 5.64e − 69 and p < 4.07e − 95 ; two-tailed binomial 
test), possibly indicating a significant change in the acces-
sibility of the adjacent regions by Dnmt machinery. In 
addition, we observed a significant positive relationship 
between repli-seq signal and methylation level within 
PMDs in all four samples with matched methylation and 
repli-seq data (linear regression; one percent change 
in methylation corresponding to a β = 0.52, 0.38, 0.43, 
and 0.42 change in repli-seq signal for IMR90, MCF7, 
GM12878, and HEPG2, respectively; p < 2.2e − 16 for 
all four models). This suggests that not only are PMDs 
associated with late-replication, but the deepest PMD 
regions are associated with the latest replication times 
(Fig.  4b). Given the increasingly tight link between late 
replication and PMD state, we asked whether any genes 
in predominantly PMD genomic regions escape their 
hypomethylating and downregulating effects. To explore 
this, we filtered for all genes in mouse and human whose 
gene bodies were less than 20% covered by a PMD, and 
whose 100-kb flanking regions were both at least 80% 
covered by a PMD. We deemed these genes “escapee” 
genes and identified 195 unique regions in human and 
88 unique regions in mouse that harbored at least one 
escapee and occurred in at least 2 samples.

Figure  4c shows the top 6 highly conserved escapee 
genes in human from left to right, as well as the meth-
ylation profiles of homologous regions across species. 
A full list of escapees, their genomic coordinates, and 
an analogous figure for mouse escapees are available 
in Additional file  1: Table  S5 and Additional file  2: Fig-
ure S8. We observed modest conservation of escapee 

behavior across species, and variability in escapee status 
even within cancer types (Additional file  2: Figure S9). 
The top hit, Fam188a, was an escapee in 37 of 76 human 
samples. It is an extremely conserved, ubiquitously 
expressed protein in mammals [21]. Interestingly, it was 
only covered by a PMD in one of the 76 samples, a lung 
adenocarcinoma sample, and has been previously identi-
fied as a tumor suppressor of non-small-cell lung cancer 
[22]. Other top hits coded for equally important proteins, 
specifically key regulators of apoptosis (MAP3K7) and 
mitotic replication such as a subunit of the origin-rep-
lication-complex (Orc5) and a protein involved in kine-
tochore function (ZWINT) [23].

Analysis of gene locations revealed that escapee genes 
exhibit similar replication timing profiles to genes 
inside PMDs, and significantly later replication tim-
ing than other genes outside PMDs (Fig.  4d; Wilcoxon 
rank-sum test; p < 2.2e − 16 for all four samples). To 
explore whether escapees also evaded PMD-associated 
expression reduction, we explored the expression pro-
files of four lung cancer cell lines and compared them 
to healthy lung samples. All cultured tissues displayed 
significantly lower transcript-per-million (TPM) distri-
butions for genes inside PMDs than the same genes in 
the healthy counterpart (one-sided Wilcoxon rank-sum 
test; p < 2.2e − 16 for each tissue). In all four cultured 
tissues, escapee genes exhibited significantly higher 
TPM than genes inside PMDs (Wilcoxon rank-sum test; 
p < 2.2e − 16 ) and similar TPM distribution to genes 
outside of PMDs (Wilcoxon rank-sum test; p < 0.1027 ). 
This implies these specific genes escape both the partial 
methylation of their surrounding genomic region and the 
accompanying reduction in expression of their neighbors 
(Fig. 4e).

Discordant PMD state across species correlates 
with expression and gene density differences
Several studies have explored the relationship between 
large-scale hypomethylation and DNA sequence [15, 
16]. We sought to explore the extent to which regions 
with homologous sequence across species shared their 
PMD state, and in what cases the PMD state was discord-
ant. To do this, we obtained large (50kb or larger) syn-
tenic blocks between human and mouse based on the 
human–mouse pairwise alignment first reported by [24]. 
For each of these blocks, we plotted the percentage of the 
block covered by breast cancer cell line PMDs in human 
(HCC1954, [7]) vs mouse (4T1, new samples) in Fig. 5A. 
The marginal distributions show that most blocks are 
either entirely covered or entirely uncovered by a PMD 
in both human and mouse. We observed a significant 
( p < 2.2e − 16 ) and positive correlation ( R2

= 0.387 ), 
showing that for most homologous regions between 
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human and mouse, their PMD state is shared. Despite 
this general trend, many blocks displayed highly discord-
ant PMD state regardless of their homologous sequence, 
with 11 blocks showing greater than 70% discordance. 

A full table of syntenic blocks analyzed with their PMD 
state is available in Additional file 1:  Table S6.

Looking specifically at the impact of discordant 
PMD state on genes, we sought to understand whether 
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differential PMD state led to significant directional dif-
ferences in gene expression. We identified orthologous 
genes between human and mouse and binned them into 
four categories: genes with PMDs overlapping them 
in both species, only in mouse, only in human, or no 
PMD overlap in either species. We observed significant 
directional differences in expression for genes that are 
differentially covered by PMDs ( p < 2.2e − 16 for genes 
in mouse PMDs but not human, and p < 1.6e − 05 for 
the genes in human PMDs but not mouse; one-sided 
Wilcoxon rank-sum tests) (Fig.5b).

Lastly, we sought to understand whether ortholo-
gous genes with discordant PMD state had differences 
in neighborhood gene density, which could indicate 
past genomic recombination events in one species to a 
region with different heterochromatin state. To explore 
this, we calculated the local gene density for each 
orthologous gene by summing the number of basepairs 
in its surrounding +/– 100 kb that overlapped with 
other protein coding genes. We observed directional 
decreases in gene density: genes overlapped by a mouse 
PMD but not a human PMD had lower local gene den-
sity in mouse than human ( p < 2.2e − 16 ), and vice 
versa ( p < 0.0547 ; one-sided Wilcoxon rank-sum tests) 
(5c).

Discussion
In this study, we described a set of axioms to help 
improve the definition of partially methylated domains 
and an improved method for PMD detection. We used 
these tools together with a large amount of data to pro-
vide data-driven cutoffs for whether a sample contains 
PMDs, and then explored the properties of PMDs across 
species and contexts.

While PMD locations were fairly consistent across 
many of the cell types we studied (i.e., occurring in 
approximately the same 5–30% of the genome) we did 
some observe cell-type specificity across different cancer 
types. The sheer size of PMDs, coupled with our meth-
od’s ability to identify them in very low-coverage situa-
tions, makes them a large and attractive target for early 
diagnosis of cancer using cell free DNA. We observed 
significant hypomethylation of satellite-rich pericentro-
meric regions and HOX gene clusters in non-PC samples. 
These pericentromeric regions may prove to be a reliable 
estimator of replication history, given the large variability 
in methylation loss there in non-PC cell types. HOX clus-
ter hypomethylation seems unlikely to arise via the same 
gradual loss processes of methylation as PMDs, and PC 
samples with PMDs covering HOX gene clusters show 
markedly different methylation patterns.
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We observed an increase of methylation levels in PMDs 
close to the boundary. This increase could reflect some 
degree of variability in the precise boundary location at 
the single cell level, or the absence of a precise bound-
ary in favor of increasingly probable hypomethylation of 
CpG sites as a result of changes in the local environment.

Despite an increasingly tight association between 
replication timing and progressive loss of methylation, 
we identified a set of genes residing in late-replicating 
domains that reliably escape this methylation loss and 
associated expression reduction. This observation, cou-
pled with the observation that particular histone marks 
like H3K36me3 co-locate with CpGs that maintain their 
high methylation in late-replicating regions [16] are con-
tributing to an increasingly clear picture of the major 
determinants of genome-wide methylation state. It seems 
likely that starting from some early state following global 
epigenetic reprogramming in early development, gradual 
reduction in methylation levels occurs in late-replicating 
regions. This gradual reduction could roughly track the 
history of the cells in question, and culminates with iden-
tifiable partially methylated domains in cells with a long 
history of mitotic division, as in liver, placenta, many can-
cers, and cultured cell lines. Concomitant with this meth-
ylation erosion, the actively maintained methylation of 
critical genes like escapees are exposed like shells at low 
tide. Mechanisms have been proposed for the preserva-
tion of expression in genes close to the lamina, though 
whether these mechanisms are responsible for escapee 
methylation is unclear [25].

We observed striking differences in oocyte PMD loca-
tions from the PMDs of any other cell type. Given that 
oocytes are non-dividing, their PMDs are inconsist-
ent with the gradual, replication-induced methylation 
loss model of other contexts described above. It is pos-
sible that incomplete remethylation following epigenetic 
reprogramming of primordial germ cells, rather than 
replication-induced methylation loss, gives rise to oocyte 
PMDs. Heterochromatin-mediated inaccessibility could 
explain the long-term lack of remethylation, and the sig-
nificant differences in PMD locations of oocytes from 
somatic tissues. Studies to determine the precise timing 
of changes in heterochromatin state and remethylation 
of primordial germ cells would add valuable evidence for 
PMDs as a characteristic signature of heterochromatin 
state.

The discussion of PMD association with late-repli-
cating domains and sequence is well explored, but dis-
entangling the relative effect of these factors on PMD 
state has been difficult. While we failed to directly 
explore the differences in replication timing across spe-
cies in this manuscript, we observed that for ortholo-
gous genes in mouse and human, changes in PMD state 

were linked to changes in gene expression and local 
gene density. This result could be related to position-
effect variegation [26] on a species level, whereby a 
genomic rearrangement leading to the juxtaposition of 
an otherwise active gene close to heterochromatin can 
lead to its subsequent reduction in expression (and in 
this case, coverage by a PMD).

One remaining and important unknown related to 
the model of PMD formation and maintenance is the 
existence of an “equilibrium” methylation level inside 
PMDs. Some cultured cell lines have been passaged for 
a very long time and display intermediate methylation 
levels in PMDs, while others display near 0% methyla-
tion levels in PMDs. The speed at which methylation 
loss occurs in PMD regions, and where that loss stops, 
may reflect intrinsic differences in the ability to main-
tain methylation in these regions between cell types. 
Non-CpG methylation varies with transient Dnmt3a 
expression [27]. Given that we observed PMD-like 
variation in non-CpG methylation in human placenta, 
it seems likely that differences in Dnmt expression, as 
well as relative accessibility of Dnmts to PMD regions, 
could play a central role in determination of equilib-
rium PMD depth.

Conclusion
In this manuscript, we presented work aimed at 
improving the definition and identification of PMDs, 
and applied our updated identification method to take 
a comprehensive look at PMDs across species, cellular 
contexts, and in conjunction with other genetic and 
epigenetic data. Our improved method has implications 
for identification of PMDs in extremely low-coverage 
and high-throughput contexts, including in rare cell 
types, circulating tumor DNA, or in case–control set-
tings where the number of samples is much larger than 
their individual sequencing depths. Over the course 
of our analysis, we validated the increasingly well-
documented link between methylation loss and late-
replicating domains, and discovered a set of “escapee” 
genes that reproducibly buck the trend by remaining 
highly methylated and expressed despite their position 
in regions of late replication. To the best of our ability 
given the available data, we showed that these escapee 
genes are conserved across species, and that they rep-
resent a cross-section of genes for which expression 
appears critical. Left unanswered are interesting ques-
tions about why these critical genes remain in late-rep-
licating regions of the genome, how they remain active, 
and how their variable escapee status in cancer can be 
used to understand the effects of differential chromatin 
state on patient outcomes.
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Methods
An expanded methylome segmentation trackhub
We produced three trackhubs containing methylation, 
coverage, and PMD segmentations for all the samples 
analyzed in this study. One contains all PMD-contain-
ing methylomes organized by original study, another 
contains all non-PMD-containing methylomes organ-
ized by original study, and the last contains PMD-con-
taining methylomes lifted to distant reference genomes 
(human to mouse and all species to human). These 
are public and can be accessed via the UCSC genome 
browser by entering http://smith​lab.usc.edu/lab/publi​
c/decat​o/Decat​o-PMDs/hub.txt, http://smith​lab.usc.
edu/lab/publi​c/decat​o/Decat​o-nonPM​Ds/hub.txt, and 
http://smith​lab.usc.edu/lab/publi​c/decat​o/Decat​o-Lifte​
d-PMDs/hub.txt, respectively, into the “My hubs” 
section.

Mouse mammary tumor cell lines
The parental mouse mammary tumor cell line 4T1 
(ATCC) and the derived clonal cell lines were cultured as 
described in [28]. Genomic DNA was extracted using the 
QIAmp DNA Blood Mini Kit (Qiagen). Bisulfite sequenc-
ing libraries were generated as previously described [29] 
In short, genomic DNA was fragmented using the Cova-
ris LE220 sonicator to a target fragment size of 200bp. 
DNA fragments were repaired and ends blunted and 
phosphorylated. Then, adenylated fragments were ligated 
to Illumina-compatible paired-end adapters. Subse-
quently, DNA fragments were purified using the MinE-
lute PCR Purification Kit (Qiagen). Fragments were then 
denatured and treated with sodium bisulfite using the EZ 
DNA Methylation-Gold Kit (Zymo Research). Then, the 
sample was desulfonated and PCR amplified with High 
Fidelity Expand Plus (Roche) using paired-end adapter-
compatible primers. Illumina sequencing was performed, 
generating 76-nucleotide paired-end reads.

Lung cancer cell lines and healthy lung tissue
We generated WGBS and RNA-seq libraries for 4 non-
small cell lung cancer cell lines and 2 primary normal 
lung epithelial samples. The cancer cell lines consist of 
3 adenocarcinoma (H1650, H441 and M3) and a squa-
mous cell carcinoma (Calu-1). The two primary lung 
samples are from small airway epithelial (SAE) and bron-
chial epithelial (BE), respectively. These primary samples, 
along with the H1650, H441 and Calu-1 cell lines, were 
obtained from ATCC. The M3 cell line was isolated from 
H1650 for its resistance to the drug erlotinib and dis-
played features suggestive of epithelial-to-mesenchymal 
transition [30]. Genome wide, the WGBS datasets reach 

10-15X coverage and cover 93.8%-95.1% of all CpG sites, 
with bisulfite conversion rates uniformly above 98%.

Miscellaneous methods
We downloaded genome annotations for repeats [31], 
CpG islands [32], and human gene bodies [33] using the 
UCSC table browser [34]. Additionally, we made use of 
Ensembl biomart to identify orthologous genes across 
species [35]. The bedtools software suite was used exten-
sively throughout the manuscript [36]. Public Repli-seq 
[37], CTCF binding [38], and ChromHMM segmentation 
data [39] were downloaded from the UCSC table browser. 
Chromatin loop estimates were downloaded from the 
public data provided by [40]. Asterisks denoting signifi-
cance in figures were coded as a single asterisk mean-
ing p < 0.05 , two asterisks meaning p < 0.01 , and three 
asterisks meaning p < 0.001 . Observed/expected over-
laps for PMD boundary regions with genomic features 
such as CpG islands, transcription start sites, and tran-
scription end sites were performed by computing their 
observed/expected overlap with the +/– 2.5kb surround-
ing the boundary.

We merged the intra-species placenta methylomes 
from [11] to produce high-coverage methylomes of the 
labyrinthine and junctional placental zones. Mouse 
methylomes from [11] originating from strains other 
than C57BL/6J were remapped to their recently com-
pleted native reference genomes [41] using WALT [42] 
before being lifted to mm10. All lifts between genome 
assemblies were performed using the lift-filter program 
in Methpipe, which acts as a methylation-aware wrapper 
for the liftOver tool [43]. No chainfile existed for bosTau8 
to hg19, so we lifted it from bosTau8 to hg38 and then 
from hg38 to hg19.

All RNA-seq libraries were mapped using STAR [44] 
and processed using HTSeq [45].
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genes for mouse and human. Table S6. Syntenic blocks between human 
and mouse with fraction covered by PMD and coordinates in each spe-
cies. Discordant if greater than 70% difference in PMD state.

Additional file 2: Figure S1. (A) HOX gene clusters display abnormally 
large, near-complete hypomethylated regions in non-PC samples. (B) 
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appears linked tosatellite repeat density. Figure S2. Pairwise Jaccard index 
of segmented PMDs in mouse PC samples. Figure S3. UCSC genome 
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estimates (black) to the fraction of non-CpG cytosines in 50kb bin that 
display nonzero methylation levels (green andpink). Figure S4. Metagene 
plot of methylation level and CpG density as a function of distance from 
PMDboundary stratified by species. Figure S5. Histograms of CTCF bound 
site distances from PMDs. Figure S6. Retrotransposons at PMD boundaries 
are included/excluded in the PMD in a family-specific manner. Difference 
in observed/expected ratio for each family by species, with a zoom out 
showing that theyoungest Alu elements are excluded from PMDs more 
than the oldest Alu elements. Figure S7. Scatterplot of TCGA-reported 
primary tumor purity against number of basepairs segmented into 
PMDs. Figure S8. Top 6 most conserved mouse escapee genes and their 
methylation state in homologous regionsof human. Figure S9. Adjacent 
escapee genes showing differential escapee state in TCGA bladder cancer 
samples.
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