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Abstract

High-throughput sequencing technologies have evolved at a stellar pace for
almost a decade and have greatly advanced our understanding of genome
biology. In these sampling-based technologies, there is an important detail
that is often overlooked in the analysis of the data and the design of the
experiments, specifically that the sampled observations often do not give
a representative picture of the underlying population. This has long been
recognized as a problem in statistical ecology and in the broader statistics
literature. In this review, we discuss the connections between these fields,
methodological advances that parallel both the needs and opportunities of
large-scale data analysis, and specific applications in modern biology. In the
process we describe unique aspects of applying these approaches to sequenc-
ing technologies, including sequencing error, population and individual het-
erogeneity, and the design of experiments.
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Library complexity:

a measure of the
quality of a sequencing
library, typically
quantified by the
number of distinct
reads obtained for a
given level of
sequencing

Genome coverage:
the fraction of the base
pairs in the reference
genome covered by at
least one mapped read
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1. INTRODUCTION

High-throughput sequencing is a set of technologies that allow for sampling and identification
of the DNA sequence of millions of molecules from a large pool of fragmented DNA. We refer
to the pool of fragmented and amplified DNA molecules ready for sequencing as a sequencing
library. How these molecules are constructed determines the assay and what the researcher can
investigate. There are hundreds of such assays, and an incomplete list is available in Reference 1.
Some standard assays include whole-genome sequencing (WGS) and RINA sequencing (RNA-
seq). These assays have recently been extended to the single-cell level, which allows researchers
to directly investigate cell-to-cell heterogeneity, among other applications.

Although these assays have dramatically increased understanding of many biological princi-
ples, there is a hidden hazard inherent to any sampling-based technology. This is the fact that
the observed sample is not perfectly representative of the full library, and is often a very poor
representation. Rare and low-abundance molecules are hard to sample. Unless the researcher can
sequence the sample to complete saturation, there is always a small chance that some molecules
are missing from the sequenced reads.

This problem is universally recognized in the statistics literature as the species sampling prob-
lem (2), and it dates back to the work of such luminaries as R.A. Fisher (3) and Alan Turing (4). The
field has long recognized problems introduced by the missing species when finite samples are the
basis for analysis of populations. For example, the maximum likelihood estimate for the frequency
of a particular species is proportional to the number of sampled individuals of that species. This
implies that any unobserved species will have an estimated abundance of zero. This is a prepos-
terous estimate because without complete sampling there are almost always unseen species in the
population, and this estimate can have negative implications for downstream analysis.

In this review, we have two aims: (#) to introduce and review statistical approaches that can be
applied to analyze molecular heterogeneity and (&) to introduce a broad set of modern applications.
The applications we cover are intended to illustrate techniques for addressing such problems,
highlight their prevalence, and present solutions that may be applied across other applications.

The statistical methodology we cover is rooted in capture-recapture and species sampling
statistics and constitutes a rich body of approaches that have yet to be fully explored in the context
of modern, large-scale data analysis. In particular, this review covers methods for estimating the
species accumulation curve (SAC), species richness, and sample coverage. In Section 2, we define
these quantities and provide a review of the theory and methods, although not comprehensively.
Classical applications of species sampling involve data sets on the order of hundreds or thousands
of captured individuals, and classical methods focus on simple deviations from homogeneity. In
contrast, applications in modern biology involve millions or even billions of sampled molecules.
This creates new problems but also new opportunities because methods are required that can use
the scale of the data to better model the underlying heterogeneity and to make more accurate and
powerful inferences. We try to focus on newer methods that are more applicable to large-sampling
experiments.

We next explain a set of application areas that share similar questions but have unique features.
First,in Sections 3 and 4, we discuss library complexity and the issues of genome coverage in high-
throughput sequencing. We focus on estimating how certain summary metrics (e.g., the number
of unique molecules and per-base coverage) change as a function of sampling efforts, which relates
to SACs. In Section 5, we discuss estimating the genetic diversity across a population: How many
genetic variants can be observed in a population as the sequencing effort increases, in terms of
both sequencing depth and the number of individuals investigated? We then proceed to discuss
the application of species sampling models in the interrogation of the immune repertoire. We
examine sampling issues with single-cell sequencing and show how sample coverage could screen
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out samples that may not be repeatable. Finally, we briefly discuss difficulties in estimating sample
coverage in metagenomic sequencing data. In Section 6, we highlight the effective use of statisti-
cal tools from the species sampling problem to high-throughput sequencing applications, and in
Section 7, we outline best practices for using these classic methods.

2. STATISTICAL FOUNDATIONS

There are two basic species sampling models that can be considered, the multinomial and the
Poisson. In high-throughput sequencing, the sampling depth can be controlled to some extent but
is still random, justifying the Poisson assumption. In general, we assume that there are S species
with Poisson rates or abundances of A1, . . ., Ag and relative abundances of ry = A1/ )" Ay ..., 715 =
As/ Y_; Ai. Let x; denote the count of species i and let N = 3% x; be the total number of sampled
individuals. The underlying assumption is that «; is a Poisson random variable with Pr(X; = j) =
A/ /! exp(—A;). In all of the cases, we assume that the ordering of the species holds no special
significance so that the data can be summarized by the count frequencies z; = ¥ 1(x = j), the
number of species observed exactly j times. For the ease of derivation, it is standard to assume
that the rates arise from a common latent distribution 1(1). Then the expectation of #; is equal
to

S =9
Eln;] = Zkf/j! exp(—2X;) = S/o M/ jlexp(—=2) du(r).
i=1

The underlying problem, and the source of all frustration, is that we do not observe the zero
counts, 79. A further complication is that these are necessarily the rarest species, so that the left
tail of the abundance distribution is hidden from the investigator, creating what can be considered
a length bias in the sampling process because the rarest species are less likely to be samples (5).
We begin by considering a set of related questions that an experimenter might ask about ei-
ther a sample, a population, or the benefit of additional sampling. In most experimental contexts,
the size of the population is unknown and the statistical properties of the population are poorly
understood. These questions can be generally summarized into the following categories.

m SACs: If the experimenter samples additional individuals, how many previously unobserved
species will be seen? We can rephrase this question in the context of modern sequencing
applications as asking how many additional molecules should the experimenter expect to
observe from additional sequencing.

m Frequency estimation: What is the expected population frequency of a species observed
times in the sample? To see the importance of this question in data analysis, consider that if
the sample does not contain all the species in the population, then the relative proportions
of those that have been observed will be on average overestimates of the true proportions.

m Saturation: What is the total population frequency of species represented in the sample and
how does this change with additional sequencing? Intuitively, this informs the experimenter
about the “weight” of the unobserved species.

m Species richness: How many unique species exist in the population in total? Stated in the
language of large-scale biology, this question might be phrased as asking how many distinct
molecules exist in a population.

m Notions of diversity: How can a researcher properly compare different populations? In het-
erogeneous populations, it is not just the number of molecules but also their abundances
that distinguish populations.
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2.1. Species Accumulation Curve

The SAC is defined as the number of species observed as a function of sampling effort. There
are in general two categories of methods to estimate the SAC: to estimate the latent abundance
distribution (1) and then calculate the curve under the estimated (1), and to estimate the SAC
directly and avoid estimating @ (). The first category of methods is split into parametric and non-
parametric methods. The parametric methods assume a parametric form for the latent distribution
1(X). As a notable early example, Fisher (3) assumed that relative species abundance followed a
latent gamma distribution and then derived the log-series distribution as the limit as the num-
ber of species goes to infinity (6). Many other parametric distributions have been investigated,
such as the power-law distribution, the log-normal distribution, and the inverse Gaussian distri-
bution and its generalizations (7-10). Nonparametric methods can be further split into two sub-
classes, those that attempt to recover the latent distribution via maximum likelihood (11, 12) and
Bayesian methods based on the Poisson—Dirichlet process (13). In the former case, since the ob-
served data are discrete, the nonparametric maximum likelihood estimator (NPMLE) is a discrete
distribution (14), although one can generalize this to other types of mixtures (15). The Bayesian
methods assume that there is an infinite number of species, since if there is only a finite number
of species the Poisson—Dirichlet process results in counts that are negative binomial distributed
(16).

There are also methods to predict the SAC that do not estimate the latent abundance distribu-
tion. For example, Good & Toulmin (17) derived a nonparametric power series estimator for the
SAC that performs extremely well when extrapolating to at most twice the original sample size
(¢ < 2). Unfortunately, the power series diverges rapidly in practice for# > 2 due to dependence on
the largest observed count (e.g., the highest abundant species). Efron & Thisted (18) constructed
estimators based on the Good—Toulmin power series using linear programming and Euler’s se-
ries approximation. We have proposed a rational function approximation to the Good-Toulmin
power series (19, 20). The choice of the rational function allows for both close approximation of
the Good-Toulmin power series for small # and stable predictions for large ¢. It has been hypoth-
esized that the furthest out one can extrapolate the SAC is + = O(log N) times the initial sam-
ple, O(N'log N) in total (21). There are two key properties that help in extrapolating the SAC:
It must be nondecreasing and convex. Critically, this implies that if two curves cross, then they
will never cross again (e.g., see figure 1 in Reference 19), which can help in comparing curves or
populations.

Unlike methods that estimate the latent abundance distribution, it is not trivial to extend
methods that estimate the SAC directly to predict the number of species represented at least
times (#-SAC) as a function of sampling effort, since both the total number of species and the la-
tent abundance distribution are unknown. One reason is that these curves are not strictly convex
and have a single inflection point. Predicting this inflection point is difficult (22). Naturally, one
can estimate the underlying distribution and then estimate the curve analytically from the esti-
mated distribution (23). An alternative approach was proposed by Deng et al. (24), who showed
that the 7-SAC can be derived as a function of the derivatives of the original SAC. Therefore if
one can obtain a smooth and accurate estimator of the SAC, then the -SACs follow directly for
any 7.

Recently, there has been an interest in the problem of estimating the SAC for multiple samples,
and the Good—Toulmin power series can be extended to this case (25). The ideal application of
this method would be for cell type identification in single-cell sequencing (26), but in the case of
de novo identification of cell types, there are large practical issues with this methodology, as we
discuss in Section 5.3.

Deng et al.



Annu. Rev. Biomed. Data Sci. 2019.2. Downloaded from www.annual reviews.org
Access provided by University of Southern California (USC) on 04/15/19. For persona use only.

BD02CHO03_Smith ARjats.cls March 15,2019 10:35

2.2. Frequency Estimation and Saturation

Frequency estimation is a common application for species sampling models in linguistics. The
objective is to smooth the observed frequencies to account for the unobserved species or words. As
with the SAC, one can make parametric assumptions about the underlying abundance distribution,
use the observed counts to estimate the distribution, and then smooth the frequencies to their
expected counts. This includes power law smoothing, of which a special case the well-known Zipf’s
law (27).

Perhaps the most widely known method of frequency estimation is the empirical Bayes (28)
estimator of I.]. Good (29), originally suggested by Turing during World War II (30), and hence
known as the Good-Turing estimator. They showed that the expected abundance of a species
observed j times is proportional to the fraction of species observed j + 1 times. Most importantly,
this implies that the abundance of species that are unobserved is proportional to the fraction of
singletons in the population:

S
E|S pil@ =0)|n,n } -n 1.
{2 | =2

The abundance of the observed population is commonly called the sample coverage. Equation 1
implies that the sample is completely saturated (all species have been sampled) only if the number
of singletons is zero, but this very rarely occurs in any high-throughput experiments.

It may be of interest to extrapolate the sample coverage, similar to the case of extrapolating the
SAC (31, 32). This will allow researchers to decide the level of sequencing that achieves effectively
no more information (e.g., 33). Indeed, we have shown that the derivative of the SAC is equal to
the sample coverage curve (22), so that these two problems are equivalent and all of the methods
discussed in the previous section can be applied.

2.3. Species Richness

As in the discussion above, one can always choose between parametric or nonparametric ap-
proaches to estimate the number of missing species. In the case of parametric estimation, it is
common to apply model selection using AIC (Akaike information criterion) or BIC (Bayesian in-
formation criterion) (34), but it has yet to be determined if this form of model selection leads to
accurate inferences about the number of species. Even in the case where it is known that all species
are equally abundant, it is possible that no unbiased estimator exists (35). In the heterogeneous
populations that we encounter in modern sequencing data, parametric assumptions usually grossly
underestimate the heterogeneity, which results in an underestimation of the number of missing
species. We have found that nonparametric approaches tend to perform better, but these methods
also have significant drawbacks, and there is no established method that s superior in all situations.

Estimating the number of species in the nonparametric setting is extremely difficult, as there
is an infinite number of possible distributions that can explain a finite sample (36, 37). If the ob-
served counts are assumed to be generated by a Poisson sampling process, then in theory the
underlying distribution is identifiable (38), but in practice this is only possible when the sample
size is infinite (39). The tactic usually employed to solve this is to limit the space of the underlying
distributions.

The most common method is to fit a mixture of discrete distributions and then estimate the
total number of species. In general a unique maximum likelihood estimator exists (40). This dis-
crete distribution (NPMLE) (11) will have the number of support points equal to the number
of unique species counts. A major issue with the NPMLE is that to guarantee the existence of a
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solution, the parameter space must be compact. Therefore an abundance of zero must be included
as a possibility. This creates an instability in the estimator and the possibility that an infinite num-
ber of species is estimated (41). To solve this issue, researchers have proposed a number of strate-
gies, including penalizing the likelihood to prevent very small abundances (42) and setting a mini-
mum cutoff to define what abundances are interesting (5, 43), since one might consider extremely
rare species to be uninteresting in some applications. Another approach offered constructs a dis-
crete distribution by linear programming (44). Alternatively, one can fit mixtures of nondiscrete
distributions, such as exponential or gamma distributions (15). However, we have found that these
methods have difficulties scaling to sequencing data because of the computational load.

To avoid the problems involved in fitting the underlying distribution of species abundances,
researchers have proposed several methods to estimate species richness without estimating the
abundance distribution. To avoid explosion of the estimator, one can focus on either strict lower
bounds (45) or approximate lower bounds (39). The jackknife estimator is a method developed for
correcting these sample size dependencies (46). We have found that this estimator performs well
when the sample size is smaller than the number of species but tends to overestimate the species
richness when the sample size is larger than the number of species and the abundance distribution
is highly heterogeneous (39). Another approach is to estimate the coverage and then estimate the
number of species via a Horvitz—Thompson-type estimator (47). In the equal-abundance case, the
estimator is known as the Good estimator (29). Chao & Lee (48) added an additional parameter to
account for overdispersion, and Chao & Bunge (49, 50) have extended it to the negative binomial
model, although this sometimes results in negative estimates of the number of species (39, 42). A
new approach is to relate the ratio of successive frequencies to the number of unobserved species,
using nonlinear regression to estimate the latter (51, 52). One advantage of this approach is that
it can be modified to work without using singletons in cases where the sequencing error is high
and the estimated number of singletons in not trustworthy.

Another common approach is to estimate the SAC and then use the predicted number of dis-
tinct species for as the sample size becomes large or tends to infinity (20, 53, 54). Unless the esti-
mate is the limit of the SAC as the sampling goes to infinity, this approach tends to underestimate
species richness. In general, using extrapolating SACs to estimate species richness is discouraged
as unsound statistical practice (55) because the SAC is a function of the sampling effort, which is
correlated with, but not predictive of, the true species richness.

2.4. Diversity

Due to the difficulties in estimating the total species richness, researchers have looked to other
estimators of diversity that take into account not only the number of species but also their abun-
dances. Some researchers (e.g., 56-58) focus on entropy, usually the Shannon entropy. Another
popular diversity index is the Gini-Simpson index (e.g., 59, 60), which is equal to the probability
that two randomly sampled molecules are identical.

Due to the influence of unsampled species, the estimates of entropy or diversity will be biased
and will depend on the sample size. Many different estimators have been proposed to correct
for this problem, including those suggested in References 44, 61, and 62. We have not evaluated
these estimators; therefore, we are unable to give guidance on the relative benefits and pitfalls of
each estimator.

Both Shannon entropy and the Gini-Simpson index can be generalized as Hill numbers (43),

s\ U=
1D = (pr) ,
i=1
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where ¢ > 0 and ¢ # 1. There is another widely used diversity index called Renyi entropy, which
is a transformation of Hill numbers (63). It may be desirable to estimate the full range of diver-
sity indexes for all available values of ¢, but this will be equivalent to estimating the underlying
abundance distribution (64). Therefore the same issues that we discussed above in estimating the
abundance distribution (e.g., identifiability) also apply here.

As discussed by Kaplinsky and Arnaout (43), no single measure of diversity can capture all fea-
tures of the populations that one might find interesting. For example, species richness quantifies
the number of species and ignores differences in abundances. In the extreme opposite case, the
Berger—Parker index measures only the abundance of the most abundant species and ignores dif-
ferences in the number of species. Diversity measures in between these two extremes quantify to
some degree the tradeoffs between the number of species and their relative abundances, and it is
up to the researcher to decide which measure is important for their investigation.

3. SEQUENCING LIBRARY COMPLEXITY

The concept of library complexity is best conveyed by providing examples rather than a spe-
cific definition. Low-complexity sequencing libraries are those that contain either few unique
molecules or a small fraction of unique molecules that appear in many copies in the sequenc-
ing library. High-complexity libraries have a large number of unique molecules in approximately
uniform abundance. High-complexity libraries are usually preferred by researchers because they
maximize the information gained for a fixed amount of sequencing. The practical issues of mea-
suring library complexity also depend on the application, and how to measure unique molecules
should be chosen based on the objective of the experiment (see the sidebar titled Counting Unique
Molecules).

Evaluating the complexity of sequencing libraries is important for several reasons. First, for
problematic samples that may contain a multitude of biases, it is often desirable to avoid the un-
necessary cost of sequencing a low-complexity sample or to tailor the level of sequencing based
on a cost-benefit analysis, which measures the efficiency of gaining new molecules as sequenc-
ing continues. It may also be desirable in such cases to make multiple libraries and choose the
most promising one to sequence deeply (Figure 14). In these cases, a shallow initial sample is se-
quenced for each sample and then the SAC (called the complexity curve in this case) is estimated to
predict the benefit of additional sequencing (e.g., Figure 15). This allows researchers to spend re-
sources in the planning stage of the experiment in order to save resources (e.g., time, money) when

COUNTING UNIQUE MOLECULES

In any application, applying the approaches covered in this review requires a definition of when two observations
represent the same original molecule. In the context of sequencing library complexity, we must determine an identity
for each read (or paired-end fragment). This is commonly done by mapping locations in the genome or, more
effectively, with unique molecular identifiers (UMIs) (65). Depending on the sequencing application, if two reads
map to the same location in the genome, we might have evidence that they originated from the same molecule
[e.g., from the same PCR (polymerase chain reaction) clone]. In applications where reads are expected to map to
very precise positions, for example, in targeted sequencing (66), enrichment-based protocols (67), or droplet-based
single-cell RNA-seq protocols that capture only one end of the transcript, the expected coverage for the desired
regions will be extremely high, and even reads from distinct molecules often map to the same location. UMISs provide
additional information in the form of random barcodes ligated to molecules prior to PCR amplification.

www.annualreviews.org o Molecular Heterogeneity in Large-Scale Biological Data 45
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(4) The number of distinct reads for (/eft) an initial sample of one million (M) reads and (right) a full sample
of 50 M reads in three human ChIP-seq (chromatin immunoprecipitation and sequencing) experiments (70,
71). (b) To determine the desired sequencing depth for a bisulfite sequencing sample of gorilla sperm, we
performed an initial shallow sequencing sample of approximately 5 M reads (/ef?) and used this to predict the
complexity curve (right) to decide the desired sequencing depth. We chose a depth of approximately 100 M
reads and obtained 56.1 M distinct reads compared to the prediction of 56.6 M (72).

conducting the full-scale stage of the experiment. It also allows researchers to compare and evalu-
ate technologies in a comprehensive manner (66, 68, 69). Other researchers have used complexity
curves to compute the desired sequencing depth to achieve near-saturation of the sample (20, 33),
but, as we discussed in Section 2.2, there are principled ways to estimate the saturation to guide
such decisions.

4. GENOME COVERAGE

Genome coverage is one of the key elements in the design of high-throughput sequencing experi-
ments (73). High coverage can avoid sampling bias and help to make robust biological discoveries.
Researchers investigating samples that have small amounts of DNA, as a result of either degrada-
tion or low number of cells, require high amounts of amplification, and coverage is often a major
issue. One example is single-cell DNA sequencing, where coverage varies wildly across amplifi-
cation methods (74). It is possible that some regions of the genome are missing entirely from the
sample and will never be covered, no matter the depth of sequencing (Figure 2).

Deng et al.
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Figure 2

Observed coverage of whole-genome sequencing of a single cell (75), along with the expected coverage
under the theoretical Lander—Waterman model (76) and preseq predictions (74) from an initial sample of
five million reads.

There are several ways to quantify sequencing coverage (see the sidebar titled Counting Strat-
egy). The naive measurement is the number of reads, commonly used in RNA-seq and other
sequencing applications where the reference is either not available or incomplete. When the ref-
erence is available, e.g., in human WGS, coverage is conveniently measured by the average se-
quencing depth, A = NL/G, where N, L, and G are the number of aligned reads, the length of a
read, and the size of the reference, respectively. This metric reflects the average number of reads
that cover a random position in the reference genome. For example, a sample with 30x mean
coverage for human WGS means that each base pair in the genome is on average covered by 30
sequenced reads. Note that the average sequencing depth contains little information about the
evenness of coverage along the genome. Since reads are not evenly distributed along the genome,
itis possible, and commonly observed, that the majority of reads are aligned to only a small fraction
of the entire genome, leaving the other regions uncovered. In this scenario, the average sequenc-
ing depth does not reflect the actual coverage of the genome. An accurate measurement is per-base
coverage, which describes, for each nucleotide in the reference genome, the number of reads that

COUNTING STRATEGY

Classic estimators require summary statistics to predict the SAC (77). The summary statistics are represented by a
two-column table. The first column is the frequency, 7, and the second column is the number of species sampled
times in the sample, known as the frequency of the frequency j. The meaning of SACs depends on the definition of
the species and the counting strategy. For example, to predict library complexity, one should consider a unique read
as a species, and the frequencies of the species are counted by the duplicates of the read (19). The estimated SAC
should be interpreted as the number of unique reads versus sequencing efforts. When the purpose of sequencing is
related to genome coverage, as in applications focused on genotype, it is appropriate to use base pairs in the genome
as species, and the frequency of a species is counted by the number of mapped reads that cover the base pair (74).
In this case, the estimated SAC should be interpreted as the number of base pairs covered in the reference genome
versus sequencing efforts.

www.annualreviews.org o Molecular Heterogeneity in Large-Scale Biological Data 47
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cover it. For example, the Broad Institute Genomic Service sets a gold standard for human whole-
exome sequencing (WES) at 85% of the exome covered by at least 20 reads (https://genomics.
broadinstitute.org/products/whole-exome-sequencing).

Coverage requirements depend on the specific application, the size of the regions of inter-
est, the read length, and so on. For example, Pollen et al. (78) showed that shallow single-cell
RNA-seq (scRNA-seq) (50,000 reads per cell) is sufficient to categorize cell types, and recent
advances in single-cell technology have moved toward sequencing hundreds of thousands of cells
at very low coverage (79). Genome assembly typically requires extremely deep sequencing to ac-
curately reconstruct the whole genome (80). ChIP-seq (chromatin immunoprecipitation and se-
quencing) coverage is determined by the particular epigenomic mark or transcription factor of in-
terest (81); for example, higher coverage is required for histone modifications organized as broad
domains, compared to narrow peaks for other histone modifications or transcription factors. Most
users determine the necessary coverage based on personal experience, empirical evidence collected
from literature, commercial recommendations, and best practices defined by the scientific com-
munity (82). For example, Sims et al. (73) provided general guidelines for sequencing coverage
for various applications. While these guidelines are very helpful, there are issues with this strat-
egy. General guidelines tend to be conservative and following them may waste resources. Many
factors from both experimental artifacts and the stochasticity inherent to each biological system
could affect coverage of sequencing data (73). It is impossible to find general guidelines that can
be appropriately applied in all cases. One valuable question is, When sequencing data appear in-
sufficient, how many additional reads should be sequenced?

The pioneering work in this area is the well-known Lander—-Waterman theory (76), which es-
timates per-base coverage in a sample for Sanger sequencing (83). The Lander-Waterman theory
has been widely used by various sequencing projects and is suggested by Illumina (82) as a guide-
line to estimate the desired sequencing coverage. The basic statistical assumption is that reads are
generated uniformly at random from the genome. Under this assumption, if G is the known size
of the genome and A = NL/G is the average sequencing depth, then the expected number of base
pairs covered in a sample is estimated as

G[1 — exp(—A)], 2.

known as the Lander—Waterman curve (see the sidebar titled A Next-Generation View of the
Lander—-Waterman Model). For single-nucleotide polymorphism (SNP) detection, it may be more
interesting to estimate the expected number of base pairs that are covered by at least 7 reads, which
is equal to

r—1
G N/ilexp(-2) =G [1 = exp(—)»)i| .

izr i=0

Here, 7 > 1 is the minimum required coverage to call a SNP.

The assumption that reads are uniformly represented in the library and across the genome,
known as the homogeneity assumption, may not account for the heterogeneity of the abundances
of reads in high-throughput sequencing. For example, GC- and AT-rich DNA fragments are un-
derrepresented in sequencing results (85). To account for heterogeneity, one typically assumes
that reads arise from a Poisson mixture. Similar to the homogeneous model, the mixture model
assumes that for a given sample, coverage of each base pair follows a Poisson distribution. In-
stead of using the same rate A for every base, the mixture model assumes that the rate A, for each
base pair i is different and is generated from another latent distribution p(x). In particular, if the
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A NEXT-GENERATION VIEW OF THE LANDER-WATERMAN MODEL

In the Lander—-Waterman model, clones are grouped as islands comprising one or more clones, based on their fin-
gerprints (we are ignoring the concept of so-called apparent islands, which concerns the overlap criteria between
clones in an island). Islands with at least two members are called contigs (84). Among the most important questions
answered in Lander and Waterman’s seminal paper (76) are the expected number of islands comprising  clones, the
expected number of clones in an island, and the expected size (in base pairs) of an island. Their methodology worked
in the context of sequencing clones because the assumption of a Poisson distribution was sufficiently accurate. We
might consider adapting the methods outlined in this review to answer analogous questions for contemporary se-
quencing technologies. This would require some means of identifying sequenced reads (instead of clones), with
other reads grouping them as islands. If we imagine sequencing a small number of reads, we can test pairs of reads
to determine if they meet the criteria for belonging to the same island. This will eventually fail because all the
methodologies discussed in this review assume that the number of species (in this application, islands) never de-
creases. However, after sufficient sequencing, we might learn that the islands begin to merge, and our SAC would
adopt a negative slope.

mass of /4(A) concentrates on a single point, the mixture of Poisson distributions degenerates to a
homogeneous model. As an example, consider RNA-seq. The difference of abundances between
highly expressed genes and lowly expressed genes could be orders of magnitude. Transcripts from
highly expressed genes are therefore more abundant in the sequencing library and more likely
to be sequenced than transcripts from lowly expressed genes. A common assumption is that the
latent distribution belongs to the gamma distribution family, I'(«, 8 = a/A), where « and B are
parameters to determine the gamma distribution and 2 represents the average sequencing depth
(86-88). Then the number of reads covering a base pair follows a Poisson-gamma distribution,
also known as a negative binomial distribution. In this case, the expected number of base pairs

G[1_<aix>a]'

As an alternative, Daley & Smith (74) proposed a nonparametric method to solve the problem

covered in the sample is estimated as

without inferring the latent distribution. This method shows promising results on whole-genome
single-cell sequencing experiments where read abundances are highly heterogeneous due to the
amount of amplification required. However, because this method does not infer the latent distri-
bution, it is not trivial to predict the number of base pairs that are covered by at least 7 reads in
the sample. Deng et al. (24) discovered a relation between the number of base pairs covered by at
least 7 reads and the number of base pairs covered under the mixture of Poisson distribution. They
showed that the number of base pairs covered by at least 7 reads in the sample can be estimated
as a simple rational function expression.

5. ADDITIONAL APPLICATIONS
5.1. Genetic Diversity

Several large-scale sequencing projects have been launched to find human genetic variations in
multiple populations. For example, The 1,000 Genomes Project, which began in 2008, has an-
alyzed 2,504 genomes across 26 population (89). The project found over 88 million variants,
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including 84.7 million SNPs, providing a basis for studying genetic diseases (89). Very recently,
such strategies have been applied to single-cell data at the individual level to determine somatic
mutation rates and their consequences (90). The aim of these projects is to identify as many genetic
variants as possible. However, due to rare genetic variants, limitations of sequencing technologies,
and the evolution of mutations, it is impossible to identify all variants. To evaluate the complete-
ness of identified genetic variants and to help design future experiments, it is important to estimate
the properties of unseen variants. In this situation, each person or cell is an observation, and then
variants are measured for each observation. In this sense, there are two levels of sampling: the
number of individuals to sample and how deep to sequence each individual. If we treat as fixed the
sequencing depth and the number of possible variant sites (e.g., the length of the genome), then
the data can be presented as a list of binary indicator variables, one entry for each variant and one
list for each individual. This structure is known in the capture-recapture literature as incidence
data (91-93).

Before diving into the problem of estimating the number of variants, we first examine how to
detect an allele. Two important components are the number of samples and sequencing coverage.
Intuitively, detecting an allele requires multiple samples that contain the allele, with each sample
containing many reads that cover the allele. We use a simple statistical model to demonstrate how
these two components affect the power of detection. Let 6 be the frequency of a randomly selected
variant in the population. Based on the Lander—-Waterman model, the number of reads that cover
a position in the genome follows a Poisson distribution. The Poisson rate A is estimated by the
average depth of sequencing. We use N to denote the number of aligned reads for this individual.
To simplify the problem, we ignore sequencing error and define the power of detecting a variant
as the probability of having at least one read containing the variant. The probability of having no
reads containing the variant is calculated as

N
-2 (]j>(1 — )0 exp(—ir) = 1 — [1 =6 + 0 exp(-=)I", 3
i=1

which is the minimum power of detecting a variant. The power increases as either sequencing
coverage or sample numbers increase. When the variant is rare in the population (9 is small),
the power of detecting the variant is low. In particular, from Equation 3, the power is less than
1 — (1 — 0)N. Therefore, to detect rare variants, it is important to have many samples to increase
the power for detection. There are other approaches to improve the power of variant detection.
For example, The 1,000 Genomes Project mixed WGS and WES to cover common variants and
rare variants from the protein-coding regions (89). In this section, we assume all factors are fixed
except for the number of individuals.

Tonita-Laza et al. (92) assumed that the frequency of an allele 6 follows a beta distribution. The
parameters of the distribution are estimated by maximizing the zero-truncated likelihood of the
observed variant frequencies. Instead of using the parametric distribution, Zou et al. used a non-
parametric method to estimate the distribution of 6 (23). They assumed that 6 follows a discrete
distribution and constructed the simplest distribution that can fit the data #; using linear pro-
gramming (23, 44). Once the latent distribution () is known, one can calculate the probability
Py of missing a variant and estimate the total number of variants as $=5 /(1 — Py). Alternatively,
Gravel (93) presented a nonparametric linear programming algorithm for estimating the num-
ber of variants as a function of individuals, using ideas presented by Efron & Thisted (94) in the
context of linguistics. Gravel et al. (95) proposed a jackknife-based approach to estimate S. The
basic idea is to use the number of observed SNPs to estimate S. It is clear that the number of ob-
served SNPs is a lower bound for S given finite number of samples. However, if the bias is of the
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form E[S] = Si +¢1/N +¢;/N? + ..., where ; are constants, the jackknife estimator can further
reduce the bias up to any given order (96).

One should be cautious when directly applying estimators for species richness to predict the
total number of variants, for a number of reasons. First, the problem of estimating species rich-
ness is very challenging, as we discussed in Section 2.3. In general, there is no unbiased estimator
available for S from the sampling data. Intuitively, no matter how large a sample is, there may still
be many variants with low abundances in the population. Even though we can bound the num-
ber of possible variants, distinct allele frequency spectra can lead to identical observations (36,
93). Therefore, the estimation of species richness heavily depends on the statistical assumptions
concerning frequency spectra in the model (see Section 2.3). Second, calling a variant is more chal-
lenging than identifying which species is observed in other applications. Sequencing errors, PCR
(polymerase chain reaction) biases, and the quality of the reference genome can cause false pos-
itives. As a result, the estimated genetic diversity can easily be an overestimate. Typically, variant
calling contains three basic components (97). First, preprocessing filters out reads with low qual-
ity. Different methods are then applied to call variants. Finally, postprocessing is further applied
to reduce false positives by adding other filters. The basic idea of these methods is to simulate the
process of sequencing and to correct artifacts to reduce false positives and negatives. Compared
with the theoretical difficulties in estimating species richness, the accuracy of variant calling con-
tinues to increase because improvements in sequencing technology keep reducing the impact of
many of the above-mentioned artifacts.

5.2. Immune Repertoire

T cells and B cells express receptor proteins (called antigens in the case of B cells) that function
in vertebrates as a form of adaptive immunity (98). T cells and B cells both undergo DNA rear-
rangement during the development of a specific region in the genome consisting of variable (V),
diversity (D), and joining (J) gene segments. This process is aptly named V(D)] recombination.
Additional processes such as mutations, insertions, and recombination can generate additional di-
versity. The result is a highly diverse repertoire of immune receptors, with lower bounds of 10'*
and 10" (99) and upper bounds of 10! and 10% (100) for the total possible receptor diversity for
T cells and B cells (100), respectively. Even the lower bounds are much larger than the number of
cells in the human body (*10'%); therefore, not all possible receptors can be present.

Notall possible receptors can be generated and it is unlikely that all are equally likely to be gen-
erated. Even if they could be uniformly likely, the body has mechanisms to select for the more ben-
eficial receptors and against others. For T cells, this occurs in the thymus, where immature T cells
are tested for their binding affinity to peptides. If the binding is too high or too low, then apoptosis
is induced in the T cell, and only the T cells whose binding affinity is just right survive selection
and are allowed to exit the thymus (98). Subgroups of cells with a particular V(D)] arrangement
are known as a clones. Peripheral T cell division can lead to additional expansion of a particular
clone outside the thymus (101). This implies that the distribution of T cell receptor repertoire
will be highly diverse and difficult to estimate. Indeed, Mora et al. (102) proposed that a natural
model for immune repertoire diversity is a power law due to selective pressure for receptor fitness.

During an organism’s lifetime, there are many additional selective pressures that will induce
diversity into the immune repertoire. The full mechanisms for this are not fully understood, but it
has been shown that immune repertoire decreases with age (Figure 3) (50, 103), is negatively cor-
related with health (104), responds to illness and vaccination (105, 106), and is positively correlated
with tumor mutation load in cancer (107). Associating immune repertoire with such external fac-
tors can elucidate the underlying relationship between the immune system and the environment.
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T cell receptor (T'CR) total repertoire estimates from (#) the observed samples, (#) Chao’s lower bound
estimates (45), and (c) preseq lower bound estimates (39), along with linear fits as a function of age and sex
for 38 individuals from Reference 103.

The question then becomes how to measure diversity of the immune repertoire. As discussed
in Section 2, there are many ways to mathematically define diversity. The naive way to measure
diversity is with the number of observed receptors. As we discussed throughout this review, the
total number of unique observed species is highly dependent on sampling or sequencing depth.
Furthermore, it ignores any useful distinction between rare versus abundant receptors. The next
most obvious way is to estimate the total number of T cell or B cell receptors by estimating the
number of unobserved receptors and adding that to the number of observed receptors. This ap-
proach can be problematic because the total number of such species is usually extremely hard to
quantify. For example, if the underlying population follows a power law, then estimating the total
population can be difficult for two reasons. First, the abundance distribution depends strongly on
the normalization constant, which is dominated by a very large number of extremely rare species
(100), which are not well captured by incomplete samples. Second, even estimating the exponent
accurately is difficult in the presence of censored data (108, 109), and the usual method of validat-
ing a power law by use of log rank-log frequency plots is problematic (110).

Because of the difficulties in estimating the number of missing species, other measures of di-
versity have been proposed for estimating and comparing immune repertoire. Some researchers
(e.g., 56, 57) focus on entropy, usually the Shannon entropy. Another popular diversity index is
the Gini-Simpson index (e.g., 59, 60), which is equal to the probability that two random T or
B cells arose from the same clone.

Even exhaustive sequencing at an exorbitant cost is not sufficient to accurately quantify the
immune repertoire, as some receptors may not be present in a blood sample but are present in
the body (111). This brings up a difficult point. Researchers in general would like to understand
the immune repertoire at a individual level, but species models can only make inferences at the
sample level. For a single sample, extrapolation or inference of diversity indices can only be ex-
tended to the sample population—the repertoire (or molecules) that is contained in the sample
and could be observed if sequencing were exhaustive. Extensions to the individual level require
multiple samples per individual, resulting in incidence data (91, 112). Modeling this data is more
complex, as it requires modeling both the missing species within each sample and the missing
species between the samples.
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Similar to how the scale of high-throughput sequencing data induced dramatic changes
in sample-based inference on species diversity, we believe that the ever-decreasing cost of
sequencing-based technologies will enable new, improved models for incidence data.

5.3. Single-Cell RNA Sequencing

Single-cell sequencing has become a popular method to profile the heterogeneity of biological
systems that may be hidden by bulk analysis. In particular, recent technological improvements in
scRINA-seq have increased the throughput from a few cells to hundreds of thousands. This has
allowed researchers to conduct unbiased surveys of complex populations and discover novel cell
types/states through the use of computational clustering of expression patterns. Itis a fundamental
requirement that the per-cell coverage in these data sets be large enough for statistically robust
results in downstream analysis, and knowing how much to sequence in a sample becomes a crucial
decision to make.

As the cell throughput increases, often scientists must find an optimal trade-off between the
number of cells to sequence and the average coverage each cell will have. In the first single-cell
technologies (113), the number of cells was small enough that such questions were moot. As bar-
coding methods started to allow cells to be tagged and multiplexed, data sets saw a large decrease
in the per-cell coverage distribution. In such cases, the library comprises not just one cell, but
a large and unknown number of cells (see the sidebar titled How Many Cell Types Exist in the
Population?). Part of the processing step is to determine the number of cells based on the number
of expressed genes and unique molecular identifiers (UMIs) in each cell (see the sidebar titled
Counting Unique Molecules).

Droplet-based technologies use barcoding methods to deconvolute the cellular origin of each
read (see the sidebar titled Massively Parallel Single-Cell RNA Sequencing). Single cells are cap-
tured by droplets that contain a lysis buffer to break the cell and reverse transcriptases that contain

HOW MANY CELL TYPES EXIST IN THE POPULATION?

For many researchers eager to apply massively parallel scRNA-seq, the most appealing possibility is discovering new
cell types. These are typically expected to be rare, as otherwise they would already have been discovered. On the
surface, it might seem obvious that capture—recapture statistics can be applied to estimate the number of new cell
types that would be observed if we sample individual cells more deeply—essentially sequencing more deeply from
prepared libraries, or preparing additional libraries from the same tissue samples. Examining this task in more detail
reveals specific challenges. To obtain a counts histogram for applying species sampling models, we must associate
individual cells with cell types. This is typically done by clustering the gene expression profiles for each individual
cell—the clusters correspond to cell types. We may assume an adequate means of identifying clusters, determin-
ing the appropriate number of clusters, and that the clustering process is successful. We still have the problem of
assigning cells to clusters. Drawing hard cutoffs based on, e.g., distance to cluster centers may lead to ambiguities
or artifacts. Using a soft clustering method, like a Gaussian mixture model, we could apply probabilistic clustering,
use randomization, and obtain a counts histogram (or repeat the process to obtain many). But another problem
emerges at this point. After sampling additional cells, the identities of the original clusters might change (114, 115).
Some of the original clusters might merge together, similar clusters may be better distinguished with more cells,
and we may obtain fewer or more cell types after sampling a greater number of cells. Indeed, what exactly defines a
cell type by its expression signature is still an unresolved question in the field (116). Therefore, at present, species
sampling models are not directly applicable to the problem of estimating the number of cell types in a population.
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MASSIVELY PARALLEL SINGLE-CELL RNA SEQUENCING

scRNA-seq methods initially required obtaining cells manually (113), which limited their throughput.
Microfluidics-based technologies increased the throughput to tens or hundreds of cells (117). Massively parallel
single-cell sequencing emerged in 2015 with immediate impact when two papers (118, 119) simultaneously in-

troduced related approaches that had the capacity to conduct scRNA-seq for thousands of cells in parallel using

droplet-based technologies. One limitation of droplet-based technologies is that it only captures the 3’ end of the
transcript. Automated machines such as 10X Chromium (120) and ddSEQ™ (121) have democratized the appli-
cation of scRNA-seq, allowing researchers everywhere to investigate heterogeneous populations.

54

both a cell barcode (CB) and a set of random UMISs that attach to each captured mRNA transcript.
All cells are sequenced together through paired-end reads, in which one end will contain the CB
and the UMI, while the the other end will contain the 3’ end of the captured transcript. In ap-
plications such as RNA-seq, whose aim is to quantify gene expression, it is important to separate
reads originating from the same gene that contain different UMIs (thus implying large quantities
of that gene or a large gene length) and reads with repeated UMIs, which indicate that multi-
ple PCR-amplified copies of the same read were sequenced. The latter, however, is an important
metric of saturation, since the combination CB+UMI is the species observed in the sequencing
library.

CBs and UMIs can be repeated, and different RNA molecules may contain both. The currently
adopted standard is to consider reads as a product of overamplification if both contain the same
CB+UMI and map to the same gene in the genome. In this case, we can summarize the frequency
with which each read was observed in the same way as we do with species, and a direct application
of species models allows us to interrogate how many new molecules are expected if we increase
the amount of sequencing.

A measure of the completeness of the sampling of the transcriptome for each captured cell
is the sample coverage (see Section 2.2), a measure of the percentage of the transcriptome sam-
pled, equal to one minus the number of singleton UMIs divided by the total number of identified
UMISs (122). This measure will identify insufficiently sampled cells that could be problematic in
downstream analysis. Alternatively, one could use species sampling models to estimate the number
of undetected genes. These are genes that are in the library and would be observed with deeper
sequencing, but not genes that are missing from library. The latter are known as dropout genes
and tend to be rare and lowly expressed genes (123). Early methods used a constant rate of dropout
across all cells (124), but recently it has been recognized that cell-level estimates of the dropout
rate are important for accurate expression quantification (123, 125).

5.4. Future Issues

In the future, species sampling models may be able to illuminate certain issues in scRINA-seq,
including:

1. How should researchers distinguish undetected genes from dropout genes based on scRINA-
seq data?

2. How should researchers design experiments to optimize discovery for cell type identifica-
tion, and how can species statistical models help to inform this problem?

3. Rather than simple cutoffs for UMI and CB counts for determining real cells, can species
sampling models help determine optimal methods for determining real cells?

Deng et al.
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OPERATIONAL TAXONOMIC UNIT

Operational taxonomic units (OTUs) are clusters of similar sequences that, in theory, reflect the evolutionary re-
lationship of species (131). OTUs are commonly used in 16S sequencing as a working definition of species. There
are two basic strategies to construct OT Us. For reference-based approaches, reads are mapped to cluster centroids,
which are chosen from predefined references. Therefore, reads that have low similarity to centroids are excluded
from analysis. This strategy does not account for unknown bacterial species. For de novo approaches, reads are
aligned against each other and grouped into OTUs. This strategy does not require references but is sensitive to
predefined thresholds and the clustering algorithm, and it ignores information on a finer scale such as strain-level
differences (132, 133). Although it is popular in 16S sequencing, OT Us are rarely used in whole-metagenome shot-
gun sequencing due to sequencing errors. Methods that are designed for 16S sequencing data often generate many
spurious OT'Us, which inflates the diversity of the sampled microbial community (134).

5.5. Metagenomics

Metagenomics is the study of environmental samples through directly sequencing their genetic
materials (126). While the traditional way of studying microorganisms has been limited by cul-
turing bacteria in the lab, metagenomics can sequence microbial species in the sampled micro-
bial community regardless the culturability of the species. Several large metagenomic sequencing
projects have been carried out, such as the Human Microbiome Project (127, 128) and the Tara
Oceans Expedition (129). These projects greatly improve our understanding of the microbiome
in our bodies and throughout the planet.

There are in general two ways to investigate microbial species in metagenomics: targeted se-
quencing, such as 16S RNA-seq, and nontargeted sequencing, known as whole-metagenome shot-
gun sequencing. The application of species models to the former is thoroughly discussed in Ref-
erence 130 and requires methods of distinguishing species, for example, by operational taxonomic
units (OTUs) (see the sidebar titled Operational Taxonomic Unit). In this section, we focus on
one of the fundamental but difficult problems in whole-metagenome shotgun sequencing: how
saturated a metagenomic data set is.

The statistic 1 — 7, /N (see Section 2.2), which is an asymptotically unbiased estimator for sam-
ple coverage, is probably the simplest metric to measure the saturation. However, in the context of
metagenomics, it is not trivial to even obtain an appropriate value of 7; due to sequencing errors
and incomplete reference genomes. For example, we can measure the abundance of a bacterial
species only if the bacterial species has a reference genome. In this case, reads that cannot map to
reference genomes are filtered out. Therefore, the summary statistics #; represents the number of
annotated bacterial species with frequency j. These summary statistics do not contain information
about unknown bacterial species in the sample.

One type of method is to directly use reads to measure the saturation of metagenomic data.
Similar to the example above, the difficulty lies in how exactly one should generate the summary
statistics #; for j > 1. Due to sequencing errors, the raw data contain many false reads that are not
from the sequencing library. The naive way of counting abundances of reads could severely inflate
the value of 7y and largely underestimate the sample coverage. For scRNA-seq, the identity of
each read is determined by its UMI (Section 5.3), which is much shorter than a read and therefore
is more robust to sequencing errors. If the reference genome is available, one can map reads to
the reference genome and then use the mapping location to define a unique read (see Section 3).
Because identical reads with a few errors can be mapped to the same location, this approach is
robust to sequencing errors. Unfortunately, sample microbial communities typically contain many
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unknown species, whose reference genomes are not available. To overcome the problem, one can
align reads against one another and set some thresholds to define duplicate reads. This strategy is
computationally expensive and sensitive to the choice of thresholds. Rodriguez & Konstantinidis
(135) proposed a sampling method to reduce the computation, but the method may be sensitive
to sequencing depth.

We have found success with using k-mers to measure the saturation for a metagenomic data
set. The idea is inspired by de Bruijn graph, which is used to correct sequencing errors for genome
assembly (136). A k-mer is a substring of length % from a read, so that a read of length L can be
decomposed into L — k + 1 different k-mers. The basic assumption is that false k-mers, those con-
taining sequencing errors, tend to have low frequencies in the sample compared with true £-mers.
Therefore, the number of abundant 4-mers, which are considered true k-mers, versus sequenc-
ing effort should reflect the genuine saturation of the metagenomic data. We use a threshold 7 to
distinguish abundant k-mers from low-frequency k-mers. The larger the value of - is, the more ro-
bust the curve is to the sequencing error. As a trade-off, a large 7 value requires a large sequencing
effort to reveal true k-mers.

Figure 4 shows the number of unique 4-mers represented at least two times as a function
of sequencing effort for metagenomic data from various environments. Each sample is extrap-
olated to 100 billion k-mers using preseqR (24). The trend of each curve shows how saturated
the metagenomic data is. The orders of the curves indicate the complexity of micro communities
from different environments. Note that this strategy may not be applied in a read level. Because
the probability of generating a false read should be higher than the probability of a false £-mer due
to the length, the metagenomic data may not real enough high-frequency reads for constructing
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Unique k-mers represented at least two times versus total sequenced k-mers. We collected 11 public
metagenomic data sets from human supragingival plaque (red), Lake Lanier (orange), Trout Bog (light blue),
and Hess Creek soil (b/ue). We used jellyfish (137) to obtain the histogram of 31-mers for each data set and
preseqR (24) to predict the number of 31-mers represented at least twice as the number of sequenced
31-mers increases to 100 billion. Given the same amount of 31-mers, samples from soil were the least
saturated among all samples. In the contrast, human samples were the most saturated. The saturation of the
Trout Bog samples was between that of Hess Creek soil and Lake Lanier. The order of saturation is
consistent with the order of complexity of microbial environments, which from the most complex to the least
complex are soil, bog, lake, and human.
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Table 1  Software for species estimation

Package Description URL Reference(s)

SPECIES Multiple species richness estimators, including SPECIES R package 138
Chao’s lower bound, ACE, jackknife, and NPMLE

preseq Species richness lower bounds, RFA to preseq C++ package 19,39
Good-Toulmin estimator for SAC

preseqR 7-SAC estimation preseqR R package 24

CatchAll Parametric species richness estimators CatchAll C# package 34

SpadeR SAC and species richness estimation SpadeR R package 139

breakaway Ratio regression estimation of species richness breakaway R package 51

edgeR goodTuring | Good-Turing frequency estimation based on goodTuring function in edgeR 141
Reference 140

EstimateS Species richness and shared species estimation EstimateS software 142

Nonpareil Sample coverage estimation for metagenomic data Nonpareil C++ package 135

Recon Discrete density estimation for immune repertoire Recon Python package 43
analysis

Abbreviations: NPMLE, nonparametric maximum likelihood estimator; RFA, rational function approximation; SAC, species accumulation curve.

6. AVAILABLE SOFTWARE TOOLS AND BEST PRACTICES

Many software have implemented these methods. Table 1 contains a complete list. In the fol-
lowing sections, we provide some guidance in applying the principles illustrated in the examples
above. We first focus on a set of pitfalls to avoid.

6.1. Is the Total Number of Base Pairs Known?

Researchers sometimes use the length of the reference genome, G, to approximate the total num-
ber S of base pairs when estimating genome coverage versus sampling efforts (see Section 4). This
simplifies the estimation for methods that rely on S but makes no difference for methods that do
not infer the latent distribution (e.g., 19).

We use Lander-Waterman theory (Equation 2) as an example to demonstrate the difference
of treating S as known versus unknown. If the value S is known, for example, the length of the
reference genome G, the parameter A is estimated as

i1

based on maximum likelihood. If the value of S is unknown, so does the zero counts, 7y. The
parameter X then is estimated by maximizing the likelihood of the observations for the zero-
truncated Poisson distribution (143). Using simple calculation, one can show that the parameter
A can be expressed as the root of the following equation,

A _ ijljnj
L—exp(=2) X, n

Once A is determined, the parameter S can be estimated via a Horvitz—Thompson estimator (47),

Zizl nj
1 —exp(—=A)
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Another way is to estimate both S and the parameter 1 iteratively. One sets an initial value of S
and estimates the parameter A using summary statistics #; for j = 0, 1,... Based on the estimated
parameter A, the value of S is updated according the Horvitz—Thompson estimator. The process
iteratively updates S and A until they converge. Sanathanan (144, 145) showed that this conditional
approach is asymptotically equivalent to the unconditional approach that requires joint maximiza-
tion of S and the parameter A.

Note that all the methods typically estimate the total number of species in a local population.
In ecology, a local population is the environment where sampling takes place; in high-throughput
sequencing, a local population is a prepared sequencing library. In other words, these methods
can only infer the number of observable species, which will be observed in the sample as sampling
effort goes to infinity. However, in a large number of cases that we considered here, the percent
of the genome covered is less than 100% no matter how deep the sample is sequenced due to
dropout. The length of the reference genome overestimates the observable length of regions that
can be covered by reads. Therefore, if the dropout rate is low, it is reasonable to use the length
of the reference genome to approximate the total number of base pairs. Otherwise, it is better to
treat the total number of base pairs as unknown.

6.2. Is the Sample Size Sufficient?

The word “sufficient” is ambiguous and depends on objectives. We use library complexity as an
example and discuss two scenarios: the reproducibility of a sequencing sample and the capacity of
inferring the sequencing library. If sufficiency refers to the reproducibility of a sample, the sample
coverage, estimated by 1 — 71 /N (see Section 2.2), is then a good, quick, and easy measurement.
Low sample coverage means that the probability of obtaining unobserved molecules is high if
sequencing continues. This indicates the large randomness of sampling. If a researcher conducts
the same sequencing experiment, many molecules observed from the previous experiment may
not appear in the current one.

If “sufficiency” means that a sample contains enough information to infer the characteristics of
the sequencing library, such as the library complexity curve, the sufficient size depends on the com-
plexity of the library and the relative abundances of molecules in it, which by themselves are hard
to estimate. However, the summary statistics contain much useful information and should be used
as necessary conditions for a sanity check. In the above, we have discussed sample coverage. An-
other simple but useful metric, derived from the Good—Toulmin estimator (17), is the alternative
sum of summary statistics, #; — 7, + 13 — ..., which indicates the expected number of new unique
molecules as the sequencing effort is doubled. If the value of this metric is negative, one should
be cautious when applying any estimator derived from the mixture assumptions (see Section 2).

In addition, the maximum frequency jmax, where #; > 0 for j < jma and #;,,, 1 = 0, is use-
ful to distinguish any outliers that have huge abundances. These outliers possess a large weight
on sequencing effort but contain little information about the unseen proportion of the sequenc-
ing library. The data with a small value of jy,, indicate the instability of high-frequency terms.
Therefore, one should put little weight on these terms when constructing an estimator. In par-
ticular, Good-"Touring frequency estimation of the relative abundance of a read observed 7 times
fails when #, = 0. A smoothing step of #; is required to incorporate high-frequency terms for
estimation (29, 140).

6.3. Is It Safe to Assume that the Observations are Independent?

In high-throughput sequencing it is common to assume that reads are independently generated
from a sequencer. However, in terms of genome coverage, the independence of coverage for each
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base pair is not obvious. One read can cover multiple sites in the genome, and therefore cover-
ages for nearby sites are related. Note that this is local dependence. When the distance of two
sites is greater than the length of a read for single-end sequencing or greater than the length of
a fragment for pair-end sequencing, their coverage can be considered independent. According to
Chen-Stein method (146, 147), coverage of each base pair in the genome can be approximated by
independent Poisson distributions. Unfortunately, the local dependence does not hold for SNPs.
Each individual can theoretically identify up to 3 billion SNPs. In contrast, only thousands of indi-
viduals are sequenced even for large-scale sequencing projects. This is a typical high-dimensional
problem where the number of samples is much smaller than the number of possible SNPs. How
to address this issue is the key to improving the estimation of genetic diversity.

6.4. Is Sampling Effort Linear to Observations Obtained?

The total number of observations is calculated as N =, j»;. In the application of genome
coverage, N is the total number nucleotides from aligned reads. Therefore, strictly speaking, the
predicted SAC based on #; should be interpreted as the number of covered base pairs versus the
number of aligned reads. Since there is little difference in the mapping rate between sequencing
runs, the number of aligned reads is linear to the number of raw reads, which is the sampling
effort.

To ensure the predicted SAC reflects the change of the sequencing effort, the implicit assump-
tion is that the total number N of observations should be approximately linear to the sampling
effort. One counterexample is predicting the number of covered base pairs as a function of se-
quencing effort in WES experiments. Compared with WGS, the coverage of each base pair in
the targeted exome regions is calculated based on uniquely aligned reads (148). In other words, if
multiple reads are aligned to the same location in the genome, only one read is accounted for in
the coverage. Therefore, the predicted curve based on #; should be interpreted as the number of
covered base pairs as a function of the number of uniquely aligned reads, which is not equivalent
to the sampling effort. To obtain the SAC, one needs to estimate the duplicate rate as a function of
the sampling effort (e.g., 19) and convert the number of uniquely aligned reads to the equivalent
sampling effort.

6.5. Is There a Parametric Form that Describes the Population?

Parametric estimation is easy to calculate and interpret but can suffer if the parametric family
is incorrect. Nonparametric estimation, in contrast, is robust to misspecification but is typically
difficult to calculate. This inherent trade-off leads to the different uses of the two paradigms.
For example, in differential expression or peak identification, the ease of interpretation is critical
and so parametric estimation is preferred, although techniques such as empirical base smooth-
ing help to improve estimation. We have found that estimation of library complexity, sequencing
coverage, and species richness is difficult in the parametric setting. In the case of complexity and
coverage estimation, we have found that for accurate estimation, extremely high-dimensional mix-
tures are required. This lends support to the use of nonparametric estimators, as high-dimensional
mixtures are difficult to interpret and properly perform model selection. In the case of species
richness, the penalty for using the wrong parametric family can be large (149). Although a multi-
tude of methods are available available, we have found that most nonparametric methods per-
form better than parametric estimation with a misspecified family. In other words, it is bet-
ter to use a wrong, but flexible, nonparametric method than it is to use the wrong parametric
method.
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6.6. Can Additional Sampling be Conducted Identically?

A critical assumption in applying a species sampling model to high-throughput sequencing is that
identification of duplicates does not depend on the sequencing depth. When using mapping or
k-mers to identify duplicates, this assumption holds. But in applications such as microbial sequenc-
ing, scRNA-seq with CBs and UMIs, and SNP calling in WGS, these assumptions might not hold.
When clustering reads into OTUs, the OTUs can depend on the number of reads available, as
more reads will help to distinguish similar species. In scRNA-seq, either UMIs and CBs are clus-
tered or minimum abundance thresholds are put in place to help distinguish dead cells from live
cells and to ensure accurate gene expression quantification. This means that a lot of singletons
will be excluded from the analysis. It is therefore likely that the true number of singletons is much
higher than the estimated number, and the estimation of the sample coverage and library com-
plexity is likely more conservative than the truth. In SNP calling, the power of detecting a SNP
depends on the number of reads that cover the base pair. This is particularly salient in SNP calling
of tumors, as the SNP frequency can vary wildly (150).

6.7. Evaluation

There are several ways to evaluate the performance of estimators. If both shallow sequencing and
deep sequencing data sets are available, one can use the estimator to predict the SAC based on the
shallow sequencing data set and extrapolate the result to the size of the deep sequencing data set to
evaluate the prediction accuracy. When these data are not available, a convenient way to evaluate
performance is subsampling the entire sequencing data set to simulate a shallow sample. Another
way is to compare the predicted SAC with the true SAC. Since the accumulation process of the
data is usually not available, the best way is to generate a SAC by subsampling the entire data set
without replacement. Heck et al. (151) provided a method to calculate the expected number of
species versus sampling effort, based on sampling without replacement. If S (¢) is the number of
distinct reads obtained from a subsample of #N reads for 0 < ¢ > 1, then we have

E[Si ()] = ;nj - (ﬂZ\(])l Xj:njc\]ﬂ;]) 4.

The generalized binomial coefficients for noninteger y are

I(x+1 .
C) = {F(Hl)(l“(t)ﬁl)’ ifx,y>0andx—y >0,

0, otherwise.

In general, the expected number S, () of species represented at least 7 times versus sampling effort

can be estimated as
. N\"! N-7\/j
BIS,0) =Y n; — (tN> 3 [(tN _fl,) ({)} 5.
J J

This unbiased estimator has the minimum variance among all unbiased estimators (152). Note
that E[S,(+)] cannot be applied to measure the saturation of the sequencing data, because E[S,(¢)]
is undefined for ¢ > 1.

For parametric methods, goodness of fit can be used to evaluate the performance of the esti-
mator (153). However, goodness of fit cannot guarantee good behaviors for extrapolation. Engen
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(153) provided an example where, although estimators fit the data well, extrapolation for these
methods was quite different.

Not all estimators have a closed form for the confidence interval. In practice, one could always
use bootstrapping to generate the confidence interval (154, 155). Given a sequencing data set, one
can generate many sequencing data sets by sampling reads with replacement and then constructing
confidence intervals from the bootstrapped estimates.

7. DISCUSSION

In this review, we have discussed the missing species problem in modern sequencing experiments.
We showed that many variations of this problem currently exist in the planning of experiments,
allocation of sequencing resources, quality control, estimation of immune repertoire, and ge-
netic diversity. We imagine that many more variations exist that we did not discuss. We hope
researchers can become aware of the connections between high-throughput sequencing and the
classical species sampling problem, and can leverage methods from capture-recapture statistics to
address similar problems in their daily studies.
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