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Abstract

The binding affinity of DNA-binding proteins such as transcription factors is mainly determined by the base composition of
the corresponding binding site on the DNA strand. Most proteins do not bind only a single sequence, but rather a set of
sequences, which may be modeled by a sequence motif. Algorithms for de novo motif discovery differ in their promoter
models, learning approaches, and other aspects, but typically use the statistically simple position weight matrix model for
the motif, which assumes statistical independence among all nucleotides. However, there is no clear justification for that
assumption, leading to an ongoing debate about the importance of modeling dependencies between nucleotides within
binding sites. In the past, modeling statistical dependencies within binding sites has been hampered by the problem of
limited data. With the rise of high-throughput technologies such as ChIP-seq, this situation has now changed, making it
possible to make use of statistical dependencies effectively. In this work, we investigate the presence of statistical
dependencies in binding sites of the human enhancer-blocking insulator protein CTCF by using the recently developed
model class of inhomogeneous parsimonious Markov models, which is capable of modeling complex dependencies while
avoiding overfitting. These findings lead to a more detailed characterization of the CTCF binding motif, which is only poorly
represented by independent nucleotide frequencies at several positions, predominantly at the 39 end.
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Introduction

The binding of proteins to cis-elements on the DNA is a key

process in transcriptional regulation. In eukaryotes, there are

different classes of cis-elements such as enhancers, silencers, and

insulators [1]. The oligonucleotide within a cis-element that has

direct physical contact to the protein is often called binding site and

has typically a size of six to twenty base pairs.

From the various types of cis-elements, much attention has been

put on enhancers, which bind transcriptions factors that directly

interact with the transcription initiation complex. The activity of

distal enhancers, which may act on genes megabases away from

their own location [2], introduces additional complexity into the

current view of transcriptional regulation. Insulators manage this

complexity by partitioning genomes into domains of co-regulation

and by preventing the interaction of transcription factors bound at

distal enhancers with the transcription initiation complex bound at

a proximal promoter [3]. In addition, insulators can also act as

chromatin barriers [3], preventing the spread of heterochromatin

when being bound by their corresponding insulator binding

protein.

In vertebrates, the most common insulator binding protein is

the CCCTC binding protein, also known as CTCF [4].

Identifying CTCF binding sites in the genome of an organism is

essential for understanding how CTCF functions. Moreover,

knowing the repertoire of CTCF binding sites in the genome is

critical for our general understanding of transcriptional regulation

in higher eukaryotes.

High-throughput methods, including ChIP-chip and ChIP-seq,

have been applied to identify the location of CTCF binding sites in

a variety of cell types. It has been found that the number of CTCF

binding sites in mammalian genomes is in the order of tens of

thousands [5–7]. The CTCF code hypothesis [8,9] states that

CTCF achieves its diverse functions through combinatorical use of

its 11 zinc fingers, with zinc fingers 4–7 binding the core motif, on

which we focus in this work. The CTCF core motif is thought to

comprise approximately 20 base pairs [6], which is large

compared to many of the best-studied vertebrate transcription

factor binding sites. However, only a few positions in CTCF

binding sites show strong conservation between sites, and many

CTCF binding sites that have been repeatedly identified show
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much divergence from the consensus sequence, suggesting that

additional modes of binding might exist [10].

Most algorithms for de novo motif discovery [11–22] assume

statistical independence among nucleotides within a motif by using

a position weight matrix (PWM) model [23,24]. This model, which

takes into account the relative frequency of each nucleotide for

each position, can be graphically represented as sequence logo

[25]. However, there are many indications that a set of

independent relative nucleotide frequencies is not sufficient for

characterizing a set of binding sites, and studies for different types

of transcription factors have shown that the independence

assumption of a PWM model is not completely justified [26–30].

Recently, protein binding microarrays [31] have become popular

for evaluating protein-DNA binding affinities in vitro, and a large-

scale study on a set of transcription factors has supported the

hypothesis of the existence of putative intra-motif dependencies

[32]. One clear advantage of the PWM model is its simplicity and

its small number of parameters [33], but there is an ongoing

discussion about its capability of approximating the binding

specificity of transcription factors [32–36]. A final conclusion

cannot be drawn at the current stage, but it becomes apparent that

a PWM model might not be the optimal choice in several cases

[37].

Popular models of higher complexity such as the weight array

matrix model [38], identical to an inhomogeneous Markov model

of order one, Bayesian trees [39], or the generalized weight matrix

model [40] take into account first order dependencies, only.

Markov models of higher order are capable of taking into account

complex dependencies among adjacent nucleotides, but since they

require a large number of model parameters, they often suffer

from overfitting, which means that they adjust to random features in

the training data.

Recently, parsimonious Markov models (PMMs) [41] have been

developed with the aim of solving the overfitting problem by

reducing the parameter space to a minimum. PMMs are based on

parsimonious context trees (PCTs, Figure 1b). Learning the structure of

PCTs from data can be solved by an efficient dynamic

programming algorithm [41]. In analogy to Markov models, both

homogeneous and inhomogeneous PMMs can be defined.

In this work, we focus on inhomogeneous PMMs [42], which

model statistical dependencies among adjacent positions in a set of

aligned sequences. An inhomogeneous PMM uses a seperate PCT

for each position in the sequence (Figure 1), and is thus able to

position-wise adapt the degree of statistical dependencies that it

takes into account. The PWM model and traditional inhomoge-

neous Markov models of higher order are special cases of

inhomogeneous PMMs. We obtain a PWM model if all PCTs

along the sequence are minimal (Figure 1b) and an inhomoge-

neous Markov model, if all PCTs are maximal (Figure 1d). All

other model structures are interpolations that can not be modeled

by fixed order inhomogeneous Markov models and special cases

thereof.

In this paper, we study to which degree de novo motif discovery

can be improved by taking into account intra-motif dependencies

using the example of human insulator protein CTCF. To this end,

we use a de novo motif discovery approach based on an

inhomogeneous PMM as motif model in order to benefit from

modeling statistical dependencies among adjacent nucleotides

within the binding sites while avoiding the problem of overfitting.

We infer the model parameters via a modified EM-algorithm [43].

The rest of the paper is organized as follows. In the next section,

we study the efficacy of modeling intra-motif dependencies for de

novo motif discovery on the example of the human insulator

protein CTCF. First, we investigate the improvement by

classifying ChIP-seq positive sequences versus control sequences.

We propose a procedure for assessing different model complexities

and finding the optimal model complexity. We then use the

optimal model from this procedure for predicting CTCF binding

sites. Second, we analyze the quantity and structure of statistical

dependencies within these sites. Finally, we propose a refined

sequence motif, which takes into account intra-motif statistical

dependencies. We discuss the data sets, and technical details of

algorithm and evaluation procedure in the Methods section

afterwards.

Results and Discussion

In the first part of the results section, we investigate to which

degree taking into account intra-motif dependencies by using an

inhomogeneous parsimonious Markov model [42] as motif model

improves the de novo motif discovery of CTCF. In the second

part, we use the model for predicting a set of binding sites, analyse

their properties, and propose a refined motif representation.

The data used in all experiments are ChIP-seq [44] data of

CTCF from the ENCODE project [45] for different cell lines. If

not specified otherwise, we use the human embryonic stem cells

data (H1-hESC) for exemplifying the prediction method and for

studying properties of CTCF binding sites.

Figure 1. Inhomogeneous PMM of order 2. Figure a) shows the general dependency structure among the random variables (positions in the
motif). Each nucleotide depends here on its two predecessors. At each position, the conditional probability table may be further reduced by a
parsimonious context tree. Figure b) shows a minimal PCT of depth 2, which is locally equivalent to a PWM model, since all contexts are merged.
Figure c) shows an intermediate PCT of depth 2. The PCT encodes five sets of context sequences: {AA}, {CA,GA}, {TA}, {AC,AG,AT,GC,GG,GT}, and
{CC,CG,CT,TC,TG,TT}. If we assume that this tree is used at position 4 in the motif, the nodes are colored according to the random variables they
correspond to in the backbone of Figure a). Figure d) shows a maximal PCT of depth 2, which is locally equivalent to an inhomogeneous Markov
model of order 2, since none of the contexts are merged.
doi:10.1371/journal.pone.0085629.g001
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After initial data processing (Methods), we obtain 3,264 ChIP-

seq positive sequences with lengths ranging from 189 bp to

888 bp. In addition, we construct a negative data set of 6,528

sequences with the same sequence length distribution. We divide

both data sets into training and test data sets at a ratio of 2:1

(Table 1).

Evaluating motif discovery accuracy
We investigate how modeling of statistical dependencies among

adjacent nucleotides of the motif influences the prediction of

binding sites. It is difficult to examine that directly on real data sets

as the position of functional binding sites is usually not known.

Even though there are annotated data sets, binding site positions

are rarely experimentally verified, but mostly obtained by a

procedure that involves a motif discovery algorithm. Since the

used algorithm often assumes statistical independence among

nucleotides within the motif, these predictions are biased towards

statistical simplicity and thus not suitable for evaluating a model

that explicitly exploits statistical dependencies among adjacent

nucleotides.

Classification. We use the following indirect classification

approach (Methods) for evaluating the accuracy of the de novo

motif prediction. We classify entire ChIP-seq positive sequences

versus control sequences which we assume to contain no (or at

least fewer) CTCF binding sites. We model positive sequences in

the foreground by allowing the occurrence of a CTCF binding site

and model control sequences in the background by the assumption

of no CTCF binding site occurrence. The foreground model and

the background model are completely identical in all aspects apart

from the motif occurrence. Hence, the only cause for an increase

or decrease in classification performance is an increase or decrease

in motif discovery accuracy of the foreground model.

Finding optimal model complexity. A necessary step of a

motif discovery algorithm based on PMMs is finding the optimal

model complexity of the PMM. The detailed structure of the

parsimonious context trees in the model is inferred by an efficient

dynamic programming algorithm [41]. However, the model

complexity can be influenced by setting an external parameter

k, which interpolates between the extreme cases (Figure 1). If k is

very small, each inferred parsimonious context tree consists of only

one leaf, and the resulting PMM of order D is equivalent to a

PWM model (Figure 1a). If k is large, the resulting PMM of order

D is equivalent to an inhomogeneous Markov model of order D
(Figure 1b). This allows for interpolating between simple models

with few parameters, ignoring many potential statistical depen-

dencies, and complex models with many parameters, which are

probably prone to overfitting.

In order to determine which value of k yields an optimal model

complexity, i.e., an optimal tradeoff between modeling dependen-

cies and avoiding of overfitting, we perform in a first study a 10-

fold cross validation of the aforementioned classification experi-

ment on the training data set Htrain. We use an inhomogeneous

PMM of width 20 and initial order four, and vary k to obtain

models of different complexity. For each value of k we measure the

classification performance by the sensitivity for a fixed specificity of

99% and average it over the ten cross validation iterations. For

visualizing the results, we plot the sensitivity against the average

number of leaves that we obtain with a particular choice of k
(Figure 2). Twenty leaves – one at each position in the motif model

– corresponds to a PWM model. It yields an average sensitivity of

65:6% with a standard error of 4:3%. With increasing model

complexity, we observe an steep increase in sensitivity until an

average complexity of 40 leaves. With further increasing

complexity, the sensitivity varies only slightly, indicating that

models on the one hand do not yield substantial improvements,

but on the other hand do not cause overfitting yet. This changes

when the model has approximately 500 leaves where we observe a

slightly decreased sensitivity compared to less complex models of

40–400 leaves. Nevertheless, the sensitivity is still higher than that

of the PWM model, indicating that taking into account complex

dependencies still outweights overfitting effects. This finally

changes when the model complexity exceeds 1000 leaves, as the

corresponding models perform worse than a simple PWM model,

which is in agreement with the expectation that complex models

are prone to overfitting.

Among all values of k that have been used to interpolate

between PWM model and full-order Markov model, we now pick

the optimal value. The PMM with k~{4:5 contains on average

127:4 leaves and yields the highest average sensitivity (85.5% for a

fixed specificity of 99%). Hence, this k yields – on average – the

best tradeoff between capturing meaningful dependencies and

avoiding overfitting effects. In the following, we denote a

parsimonious Markov model trained with k~{4:5 as optimal

PMM for the H1-hESC training data set. Interestingly, the

sensitivity of k~{4:5 shows a standard error of only 1:3%, which

is less than a third of the standard error of the PWM model.

Hence, the optimal PMM yields an improved average motif

discovery capability and the results are also more stable.

Test on independent data and comparison with

alternative models. In a second study, we investigate how

the optimal PMM classifies independent test data. Now, we utilize

all sequences in Htrain for training the models (optimal PMM and

PWM model) and Htest for evaluating the classification perfor-

mance. We expect the classification results to differ from the cross

validation experiments, yet we still observe a dramatic improve-

ment. The optimal PMM yields a sensitivity of 85.2%, whereas the

PWM model yields a sensitivity of only 71.1% (Figure 3). In

addition, we test alternative models that also take into account

intra-motif dependencies and that can be easily incorporated into

the used EM algorithm for motif discovery. The weight array

model (WAM) [46], which takes into account nearest-neighbor

dependencies only, achieves a sensitivity of 82.3%. We have also

tested a first-order permuted Markov model [46], but it turned out

that the optimal permutation is the actual sequential ordering of

the random variables as they appear in the sequence, so it yields

exactly the same sensitivity as the WAM model. A Bayesian tree

[38], which is also limited to first-order dependencies but allows

dependencies among non-adjacent positions achieves a sensitivity

of only 81.6%. This shows that dependencies among adjacent

positions are dominant as the additional flexibility of selecting an

appropriate Bayesian tree even leads to a decreased classification

of independent test data and the structure learning of the

permuted Markov models yields essentially a WAM. A strictly

Table 1. ChIP-seq data sets for H1-hESC.

positives negatives total

training Hz
train(2,176) H{

train(4,352) Htrain(6,528)

test Hz
test(1,088) H{

test(2,176) Htest(3,264)

total Hz(3,264) H{(6,528)

The table shows the number of sequences in each subset of the input data and
the corresponding labels. The ChIP-seq positive sequences in Hz are split at a
ratio of 2:1 into training and test data. The negative sequences in H{ are the
genomic sequences flanking the ChIP-seq positive signals (excluding potential
overlaps), and they are also split into training and test data at a ratio of 2:1.
doi:10.1371/journal.pone.0085629.t001
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second-order Bayesian network (BN) [46] achieves a sensitivity of

82.6%. This is slightly better compared to the WAM, but the

improvement is only small given the much higher complexity of

the model class, which also involves finding the optimal BN

structure. These results demonstrate that (i) modeling statistical

dependencies among adjacent nucleotides in the binding sites

improves de novo discovery of the CTCF binding motif and that

(ii) inhomogeneous PMMs might be a promising alternative to

other models that also take into account intra-motif dependencies.

Different cell lines. In a third study, we further validate this

result. To this end, we repeat the same analysis for ChIP-seq data

from different cell lines in order verify that the H1-hESC data set

is a reasonable representative for all cell lines. The data processing

is in all cases identical to that of the H1-hESC data and we also

apply the identical procedure of model selection via cross

validation (Table 2) and subsequent test on independent data.

The final results are shown in Figure 4 and confirm the findings

from the study on the H1-hESC cell line.

The achieved sensitivities vary from cell line to cell line, and so

does the optimal k (Table 2). This is not surprising, since the size of

the data sets also varies to a great extent, and larger data sets

generally require a stronger prior for obtaining a certain model

complexity. However, the optimal PMM always yields an

improvement in sensitivity compared to the PWM model, stating

that taking into account dependencies among adjacent nucleotides

instead of neglecting them improves de novo motif discovery of

CTCF in all cell lines.

Supplementary Figure S1 shows a plot in analogy to Figure 4

with classification results for all cell lines using the area under the

ROC curve as performance measure, which qualitatively confirms

the results from the study that uses sensitivity. We also repeated

the same studies with negative data sampled from the whole

genome with the same length distribution as the positive peaks.

The results are shown in Supplementary Figure S2 and

Supplementary Figure S3. The classification performance gener-

ally increases, but the relative improvement gained by taking into

account intra-motif dependencies remains qualitatively identical.

Binding site prediction and motif analysis
In the previous section, we have seen that taking into account

statistical dependencies among adjacent nucleotides in the binding

site yields a more accurate motif discovery and thus a more

accurate sequence motif. Next, we use this motif model for binding

site prediction in the H1-hESC data set. Utilizing the optimal

PMM trained on Htrain, we predict binding sites in Hz by a

threshold-based approach (Methods). Using a significance level

that corresponds to finding a false positive prediction every 104

nucleotides in control data set H{, we predict 3,451 binding sites.

Sequence logo. The sequence logo corresponding to these

binding sites is shown in Figure 5a. We find several positions that

are dominated by a single nucleotide. In the context of motif

analysis, these are often called conserved nucleotides, which is

unrelated to the concept of evolutionary conservation. Especially

at both ends of the motif, the nucleotides are unconserved, i.e., there

is no dominating nucleotide at positions 1–3 and 16–20.

Comparing the sequence logo with a prediction based on a

PWM model and the same significance level, which yields 3,123

binding sites only, we observe a high similarity of both sequence

logos, resembling a previously identified CTCF sequence logo [6].

Despite the fact that the majority of binding sites in each set is not

contained in the other one, the position-wise nucleotide frequen-

cies, which are the statistics visualized by a sequence logo, of both

sets are almost identical. However, a sequence logo may be

insufficient for fully characterizing a set of binding sites. Being a

visualization of a PWM, a sequence logo is not capable of

representing statistical dependencies.

Mutual information. Thus, we compute the mutual infor-

mation (MI) between adjacent positions, which is a standard

Figure 2. Cross validation classification results on the H1-hESC training data set. We show the averaged results of a 10-fold cross
validation experiment on Htrain. For each k, we plot the sensitivity (for a specificity of 99%) against the number of leaves. Error bars show double
standard error. We observe that the sensitivity increases with model complexity and reaches a maximum at approximately 120 leaves, which
corresponds to k~{4:5. With further increasing complexity, the sensitivity remains comparatively stable until it starts to drop when the model has
more than 1,000 leaves. We observe that taking into account intra-motif dependencies improves the classification accuracy up to the point where the
model is too complex, resulting in overfitting.
doi:10.1371/journal.pone.0085629.g002
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Figure 3. Classification results on the H1-hESC test data set. We display the sensitivity (for specificity of 99%) on the independent test data
set Htest. Here we pick the optimal model from the cross validation experiment (green) and compare it with the PWM model (blue). We observe the
PMM yielding a more than 10% higher sensitivity than the PWM model, which shows that the PMM picked via cross validation on Htrain improves
motif discovery compared to the PWM model. In addition, we display the sensitivity of alternative models that take into account statistical
dependencies. We observe that alternative models also benefit from taking into account statistical dependencies, even though to a lesser extent than
a PMM.
doi:10.1371/journal.pone.0085629.g003

Figure 4. Classification results for different cell lines. We show the sensitivity (for specificity of 99%) on data sets for nine different cell lines in
analogy to Figure 3. We compare the PWM model (blue) with the optimal PMM (green), which we obtained via a 10-fold cross validation in analogy to
Figure 2. For all nine cell lines, we observe a considerable improvement of classification accuracy on independent test data by making use of the
PMM.
doi:10.1371/journal.pone.0085629.g004
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measure for quantifying statistical dependencies. We use a slightly

extended definition by computing the mutual information

I(Xi,Y
(D)
i ), where Xi is the random variable of the nucleotide at

position i of the motif and Y
(D)
i ~(Xi{D, . . . ,Xi{1). Hence

I(Xi,Y
(D)
i ), which can assume values between 0 and 2 bits, is

the MI between the i-th symbol in the motif and the preceding D-

mer. The MI for different orders D is shown in Figure 5b. It

ranges from 0.001 bit (first-order MI at position 13) to 0.37 bit

(fourth-order MI at position 19). In addition, we calculated the

p-value of each MI value (Supplementary Figure S4) based on the

fact that 2NI ln2 is x2-distributed with (DADD{1)(DAD{1) degrees

of freedom.

The MI at any given position monotonically increases with

increasing order. However, high-order MIs can become insignif-

icant. We observe significant MIs of first, second, and third order

for all positions in the motif. Considering MIs of fourth order, we

find the MI at some positions to be insignificant. This is in

agreement with the fact that the maximal order of the underlying

PMM, which has been used for the prediction of the binding site

studied here, is four, and that each position has its own

parsimonious context tree, which may – in some cases – neglect

fourth-order dependencies completely.

Comparing the MIs with the sequence logo (Figure 5), we find

high MIs at positions that are relatively unconserved. We observe

particularly high MIs at positions 17 and 19, indicating the

presence of strong statistical dependencies to the preceeding

nucleotides. Conversely, the MI is generally low at positions that

contain highly conserved nucleotides, such as position 5, 10, and

13. This can be explained by the fact that there is only little room

for additional information at highly conserved positions. An

extreme example is an absolutely conserved position for which

preceding nucleotides can not contribute any additional informa-

tion.

In addition, we also compute the MI of the PWM-predicted

binding sites (Supplementary Figure S5). The general pattern of

MI values along the motif appears similar to Figure 5b, with the

highest MIs at position 17 and 19. However, the MI values are

generally lower and also often non-significant (Supplementary

Figure S6). This shows that the inhomogeneous PMM extracts

substantially more features of the CTCF binding sites by explicitly

taking into account intra-motif dependencies.

We also compute sequence logos and mutual informations for

the other cell lines and show the results in Supplementary Text S1.

We find that the mutual information, and thus the amount of

statistical dependencies in the motif, varies only slightly among

different cell lines.

Optimal PCTs. After having quantified the statistical depen-

dencies within the CTCF binding sites, we next investigate them

qualitatively. The learning algorithm yields a set of parsimonious

context trees that maximize the posterior of the parsimonious

Markov model. The PCTs differ at each position in the model not

only in structure, but also in complexity, which is measured by the

number of leaves. We observe a total number of 132 leaves for the

entire motif, which equals 6.6 leaves per PCT on average. The

smallest tree is the tree at the first motif position. It has only one

leaf, since there are no predecessors in the sequence. We do not

observe other positions with a single leaf, so each position takes

into account its predecessors to some extent. All other PCTs have

at least three leaves. One example is shown in Figure 6. A

representative of intermediate complexity with 7 leaves is the tree

at position 17 (Figure 7a). The largest tree, which has 11 leaves, is

located at position 19 (Figure 8a). PCTs for all positions of the

motif can be found in Supplementary Text S2.

PCTs and MI values. The MI of different orders at a specific

position and the structure of the corresponding PCT are not

unrelated. Considering position 13 for instance, we find that the

nodes on the first layer of the PCT are completely fused, i.e., there

is only one node, representing all nucleotides. The first-order MI is

almost zero, while the second- and third-order MIs are significant

and the nodes on the second and third layer of the PCT show a

certain diversity. On the fourth layer of the PCT, all nodes are

completely fused, which is in accordance to the non-significant MI

of order four. Further interesting positions are 17 and 19, which

yield the two highest MIs among all twenty positions in the motif.

However, they differ in one important aspect: For position 17, the

first-order MI is already very high, and using higher-order MIs

leads to an only small increase of MI. In contrast, position 19

yields a substantially lower first-order MI, but a much larger

increase for longer contexts. The fourth-order MI of postion 19 is

finally above the corresponding MI of position 17. The ratio of

fourth-order and first-order MIs differs considerably between both

positions. This is reflected by the corresponding PCTs. The tree at

position 19 contains 11 leaves, dominated by the subtree of first

layer node C, whereas the tree at position 17 contains only 7 leaves

with a comparatively low number of splits below the first layer. For

position 19 on the one hand, the higher-order context plays an

important role if the nucleotide at position 18 is either C or T,

which are the two dominant nucleotides at this position. For

position 17 on the other hand, it does not seem to be of

importance which nucleotides are observed at position 13–15 if the

nucleotide at position 16 is known.

Conditional sequence logos. Considering these findings, we

further investigate the nature of statistical dependencies found in

the binding sites of CTCF. We focus here on positions 17 and 19,

since they show the highest mutual information, and provide a

detailed analysis of all positions of the CTCF motif in Supple-

mentary Text S2. We compute the conditional relative nucleotide

frequencies in the set of predicted binding sites given all possible

contexts of the PCT at this position. We visualize these conditional

nucleotide frequencies in a way that resembles sequence logos

[25]. A sequence logo depicts the position-wise nucleotide

frequencies along a sequence, whereas here we consider only

one fixed position in the sequence and plot the conditional

nucleotide frequencies of each context. The stack of the nucleotide

frequencies is aligned to the leaf that is representing the particular

context. In order to point out the difference to a traditional

sequence logo, we label the contexts with Roman numerals.

Table 2. Overview of different cell lines.

Cell line N k̂k avg #leaves

GM12878 7,068 210.0 118.8

H1-hESC 2,176 24.5 127.4

HeLa-S3 6,646 29.5 119.0

HepG2 1,574 25.5 96.4

HUVEC 8,162 27.5 155.2

K562 8,142 29.5 136.0

MCF7 3,082 210.0 74.0

NHEK 5,076 27.5 124.2

ProgFib 4,220 28.0 105.2

The table shows training sample size, estimated k value, and average estimated
model complexity during cross validation.
doi:10.1371/journal.pone.0085629.t002
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However, not all contexts at a position are equally important,

since the number of sequences matching a particular context in the

data set may differ to a great extent. It can be even misleading to

focus on the conditional nucleotide frequencies of a context that

represents only very few sequences. In order to take into account

the importance of each context in the visualization, we scale the

width of the nucleotide stack of a context linearly by the number of

sequences in the predicted binding sites that are actually

represented by that context. We obtain a visualization that we

denote as conditional sequence logo (CSL), and exemplify it by position

17 (Figure 7b) and position 19 (Figure 8b).

At position 17, we observe a case in which more than 90% of

the predicted sequences fall upon two of seven contexts (II and V).

The original sequence logo (Figure 5a) indicates that C and G

occur at position 17 with similar probability. We find that the

context determines which of the two alternatives is observed with

high probability. Observing ACA or GCA at positions 14–16

(context I) increases the probability of finding a G at position 17,

whereas observing GNG or GNT (context V) increases the

probability of finding a C. The remaining five contexts represent

less than 10% of the binding sites, thus the corresponding

probability distributions should be judged with caution. This is

represented by the horizontal scaling of the CSL: the smaller the

width of a CSL, the fewer sequences contributed to its estimation.

Context VI, which is similar to context V but differs at the third

and fourth predecessor nucleotide, yields an even more increased

probability of the dominating nucleotide C. For context II, which

differs from context I at the third and fourth predecessor

nucleotide, G and C are almost equally likely, whereas context I
yields a clear preference towards C. Interestingly, the probability

for finding a particular nucleotide at position 17 is mainly

determined by the nucleotide at position 16, as it determines

whether a G or a C is predominantly observed. This is a further

explanation for the small ratio between fourth- and first-order

mutual information at position 17 in Figure 5b.

At position 19 (Figure 8), the situation is more diverse. From the

eleven contexts, only three are comparatively unimportant (III,

VI, and VII), and the remaining eight contexts represent a

substantial number of sequences each. By considering the

(unconditional) sequence logo (Figure 5a), we find that position

19 is relatively unconserved, since we observe similar frequencies

for A, C, and G, while only T rarely occurs. The conditional

sequence logo indicates that the nucleotides A and G are

conserved rather strongly if they are preceded by a particular

Figure 5. Sequence logo and mutual information. Figure a) depicts the sequence logo of CTCF binding sites predicted by the optimal PMM
model. We find a high similarity to the previously known CTCF sequence logo [6]. Figure b) depicts the MI of different order between adjacent
positions. MI values with a p-value above 0:05 are considered to be insignificant and displayed by the symbol|. All MI values of first, second, and
third order are significant, and the MI values of fourth order show significance only at some positions. We find that the amount of statistical
dependencies varies within the motif to a great extent. We observe high and significant MI values at positions that are comparatively unconserved in
the sequence logo, most notably at positions 17 and 19. At very conserved positions, e.g. position 13, the MI value is very low.
doi:10.1371/journal.pone.0085629.g005
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context (II and IX–XI respectively). The first predecessor

(position 18) determines again which nucleotide is predominantly

observed, but in contrast to position 17, the remaining predeces-

sors play a more important role, as we can see by considering

contexts IX–XI and the corresponding CSL. All three contexts

require a T at position 18, and all of them yield the same high

probability of finding a G at position 19.

However, the second-most probable nucleotide strongly de-

pends on the second and fourth predecessor. Observing a G at

position 17 yields an A as second-most probable nucleotide at

position 19. Observing no G at position 17 and C or G at position

15 yields a C as second-most probable nucleotide at position 19. In

all other cases (G at position 17 and A or T at position 15), A and

C are equally probable at position 19. These higher-order effects

are the cause of the comparatively large ratio between fourth- and

first-order mutual information for position 19 (Figure 5b).

Having analyzed the CSLs at positions 17 and 19, we may

conclude that the first predecessor nucleotide is predominantly

responsible for statistical dependencies, but taking into account

second, third, and fourth predecessors may further refine the

probability distribution. This explains with hindsight the results of

the first classification experiment (Figure 2), where we observe the

steepest ascent of sensitivity for models that are much less complex

than the optimal model, and that further increase in complexity

yields a smaller ascent towards the sensitivity value of the optimal

model. For both position 17 and position 19 we finally observe that

the maximal conditional information content of the CSL is much

higher than the information content in the (unconditional)

sequence logo at the corresponding position, which further

explains the high mutual information in Figure 5b. These findings

suggest that considering a sequence motif as a set of independent

nucleotide frequencies is – at least in case of the binding sites of

CTCF – not justified.

Conclusions
In this work, we studied intra-motif dependencies within the

binding sites of human insulator protein CTCF. To this end, we

used a de novo motif discovery approach that models dependen-

cies using an inhomogeneous parsimonious Markov model as

motif model. We evaluated the efficacy of this approach on CTCF

ChIP-seq data from the H1-hESC cell line, and observed that

taking into account intra-motif dependencies yields a 10% increase

in sensitivity compared to a PWM model, which neglects intra-

motif dependencies. We repeated this analysis for eight further cell

lines and found similar increases in sensitivity by taking into

account intra-motif dependencies.

Using the optimal parsimonious Markov model, we predicted a

set of binding sites in ChIP-seq positive sequences, which we

subsequently analyzed for its statistical properties. We found

significant mutual information between a nucleotide and its

preceding oligomer at all positions. Nevertheless, mutual infor-

mations vary along the motif considerably, with the strongest

dependencies being located at the 39 end of the motif, where

nucleotides are relatively unconserved. Finally, we investigated the

nature of these dependencies by utilizing a conditional sequence

logo for each position, and we observed that some positions in the

motif are not as uninformative as a traditional sequence logo,

which neglects statistical dependencies, suggests. We also found

that the strongest dependencies exist among two directly adjacent

nucleotides, which is biophysically plausible. However, in some

cases also higher-order dependencies play a significant role.

These findings imply that – at least in case of CTCF binding

sites – the assumption of statistical independence among adjacent

nucleotides does not hold. Motif positions that previously seemed

to be unconserved, thus contributing little information to the

motif, are actually not. Their nucleotide frequencies are strongly

context-dependent, and this information is neglected by the PWM

model and unconditional sequence logo.

Considering these findings for insulator protein CTCF, it might

be worthwhile to take into account intra-motif dependencies via

parsimonious Markov models in the de novo motif discovery for

different DNA binding proteins as well. We do not expect that

modeling intra-motif dependencies improves motif discovery in all

cases. If many positions in the motif are highly conserved, there

probably is little room for dependencies, and a PWM model may

be the best choice. If a known motif has many unconserved

positions and only little training data is available for estimating a

statistical model, then a simple model is also a robust choice

despite not being able to take into account intra-motif dependen-

cies. However, if a known motif of a protein has many

unconserved positions and if there is sufficient data available,

then modeling intra-motif dependencies might be a wise choice.

Methods

In this section, we provide a brief outline of the statistical

methods used in this paper. Mathematical details can be found in

the Supplementary Text S3.

Model
For modeling N sequences of arbritrary length with putative

occurrences of protein-DNA binding sites, we utilize the simple

ZOOPS model, which assumes zero or one occurrence of a binding

Figure 6. PCT at position 13. This PCT is an example of a small tree
from a position in the motif that shows little statistical dependencies.
We observe that the first layer of the tree is completely fused, which
means that information about the nucleotide of position 12 is
neglected. The tree partitions the context sequences according to the
second and third predecessor (position 11 and 10), whereas the fourth
predecessor (position 9) is also neglected. This example shows that the
PCTs are capable of neglecting one or more context positions
completely if they do not contribute sufficient additional information.
doi:10.1371/journal.pone.0085629.g006
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site per sequence [47]. This model, also referred to as NOOPS

(noisy OOPS) model [48], is widespread [11,17,19,48] since its

simplicity offers several advantages including a linear time

complexity with respect to input size and a high modularity.

The modularity of the ZOOPS model as implemented in the

open source Java library Jstacs [49] allows combining an arbitrary

motif model (with parameters Hm) with an arbitrary flanking model

(with parameters Hf ). For the motif model, we use an inhomo-

geneous PMM [42] based on a sequence of parsimonious context

trees [41]. For the flanking model, we use a second-order

homogeneous Markov model in order to capture putative repeats

in the ChIP-seq positive sequences [50].

Within the ZOOPS model, latent variables are used to cope

with uncertainty about the motif occurrence. The binary latent

variable ui handles the situation that the i-th sequence contains

(ui~1) or does not contain (ui~0) a binding site. We model the

position of the binding site of width W in the i-th sequence of

length Li by the latent variable vi[f1, . . . ,Li{Wz1g. Since the

binding site may occur on both strands, we introduce a third latent

variable si[fF ,Rg, which indicates whether the binding site occurs

on the forward strand (si~F ) or on the reverse complement strand

(si~R). Parameters pertaining distributions over the latent

variables are combined in a parameter set Hc.

We combine motif parameters Hm, flanking model parameters

Hf and parameters for latent variable distributions Hc in one

parameter set H~(Hm,Hf ,Hc). The complete model, consisting

of likelihood and prior definition, and the corresponding learning

approach are described in detail in Supplementary Text S3.

Classification procedure
After dividing positive and negative sequences into training and

test data sets at a ratio of 2:1, we train the parameters Hf of a

homogeneous Markov model on Htrain, which is the union of both

positive and negative training data set, and we denote this model

as background model.

Next, we utilize Hz
train for training a ZOOPS model. We use an

inhomogeneous PMM [42] with structure hyperparameter k as

motif model. We use a homogeneous Markov model with

parameters Hf as flanking model, and we refer to the complete

ZOOPS model as foreground model. Hence, Hf serves (i) as

parameter of the background model and (ii) as parameter of the

submodel for the flanking sequences within the foreground model.

We estimate the parameters Hm and Hc of the ZOOPS model

by using a modified EM algorithm that increases the posterior

density monotonically [43]. Subsequently, we classify all test

sequences utilizing the foreground model and the background

model. Utilizing the true class labels, we can compute different

measures of accuracy. In this work, we compute the sensitivity for

a fixed specificity of 99%.

Since the model for the negative sequences is identical to the

flanking model for the positives, the only difference between the

foreground model and the background model is the capability of

the former to include a binding site in a sequence. If positive test

sequences are predominantly classified to be generated by the

foreground model, it can only be caused by the existence of at least

one binding site that fits well to the motif. Comparing different

motif models via this experiment, we may conclude that the model

Figure 7. PCT and conditional sequence logo at position 17. The PCT at position 17 (Figure a) is aligned with the corresponding conditional
sequence logo (Figure b) Each stack of nucleotides represents the relative conditional nucleotide frequency given the context represented by the
corresponding leaf. The width of the stack is scaled by the number of sequences that are represented by the leaf. We observe two dominating
contexts, which yield either a G (context I) or a C (context V) as dominating nucleotide.
doi:10.1371/journal.pone.0085629.g007
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that yields highest sensitivity contains the most realistic motif

model among the investigated candidates.

Binding site prediction
For predicting individual binding sites, we use the learned

parameters ĤH of the ZOOPS model and compute the likelihood

P(~XXi,ui~1,vi~‘jĤH)~P(~XXi,ui~1,vi~‘,si~F jĤH)z

P(~XXi,ui~1,vi~‘,si~RjĤH)
ð1Þ

for each possible start position ‘ in each sequence ~XXi in the

negative data set H{
train. We thus obtain a list of likelihood values,

compute the empirical probability distribution of this list, and

determine a threshold T as the likelihood corresponding to the

lowest (10{4)-quantile. Using this threshold, we predict all

subsequences of length W in each sequence ~XXi beginning at

position ‘ in the positive data set Hz
train satisfying

P(~XXi,ui~1,vi~‘DĤH)wT ð2Þ

as binding sites. As the predictions of each position of a sequence

are made independently, the ZOOPS assumption pertains only to

the training algorithm, but for given model parameters ĤH this

method is capable of predicting multiple binding sites per

sequence.

Data preprocessing
We use ChIP-seq [44] data from the ENCODE project [45],

available via the of the UCSC table browser (http://genome.ucsc.

edu/cgi-bin/hgTables?org = Human). The data is already prepro-

cessed, i.e., the steps of mapping the ChIP-seq reads to the genome

using MAQ [51] and peak calling via F-seq [52] have already been

performed. We obtain a file in UCSC narrowPeak format, which

contains a list of genome coordinates and corresponding scores.

Despite there are between 59,000 to 90,000 potential sequences,

many of them comprise only few base pairs and often have large

p-values. We discard all coordinates with a p-value greater than

10{16, i.e., we only keep coordinates with the minimal p-value.

For performing classification experiments, we also need a set of

putative sequences not being bound by CTCF. In order to keep

general properties (such as GC-content of the DNA) similar in

both data sets, we construct a negative data set by the following

procedure. For each sequence in the positive data set, we extract

its adjacent sequences of the same length from the human genome

and add it to the negative data set. Formally written, for each

positive sequence with coordinates (i,j), we add the sequences with

the coordinates (2i{j{1,i{1) and (jz1,2j{iz1) to the

negative data set. In a final filtering step, we discard – if necessary

– all negative sequences that partially overlap with positives to

obtain two disjoint data sets. We constructed the genome-wide

background data sets in a similar manner by randomly sampling

for each positive sequence two negative sequences of the same

length. If a sampled sequence contains an ambigous nucleotide or

Figure 8. PCT and conditional sequence logo at position 19. The structure of this figure is identical to that of Figure 7. Here, we observe more
contexts representing a considerable amount of realizations, since only three context (III, VI, VII) represent so few sequences that they can be
neglected. Among the other eight contexts, we observe two main types: If the predecessing nucleotide (at position 18) is a C (context II–VII), there is
a high probability of observing an A at position 19. If the predecessor is a T (context IX–XI), there is a high probabibility of observing a G. The
differences among context within those two main types are smaller, yet not negligible, since they further refine the conditional probability
distribution. One example are contexts IX and X, which differ in the nucleotide at the second and fourth predecessor. Context IX yields an A as
second most probable nucleotide for position 19, whereas context X yields a C.
doi:10.1371/journal.pone.0085629.g008
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if a sampled sequence overlaps with a positive peak from any cell

line, then the sequence is discarded and another sequence is drawn

in replacement. The final data for all cell lines is available in

Supplementary File S1 (H1-hESC and HUVEC), File S2 (MCF7

and NHEK), File S3 (GM12878 and HeLa-S3), and File S4

(HepG2, ProgFib, and K562).
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