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Abstract

Problems associated with #nding strings that are within a speci#ed Hamming distance of a
given set of strings occur in several disciplines. In this paper, we use techniques from pa-
rameterized complexity to assess non-polynomial time algorithmic options and complexity for
the COMMON APPROXIMATE SUBSTRING (CAS) problem. Our analyses indicate under
which parameter restrictions useful algorithms are possible, and include both class member-
ship and parameterized reductions to prove class hardness. In order to achieve #xed-parameter
tractability, either a #xed string length or both a #xed size alphabet and #xed substring length are
su7cient. Fixing either the string length or the alphabet size and Hamming distance is shown
to be necessary, unless W [1] = FPT . An assortment of parameterized class membership and
hardness results cover all other parameterized variants, showing in particular the e<ect of #xing
the number of strings.
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1. Introduction

Finding strings that are approximately present in each of a given set of strings is
a problem common to many areas of application, including computational biology.
What “approximately present” means can vary, including the existence of di<erent and
arbitrarily-sized gaps in instances of the found string. In this paper, we restrict the
approximate presence of a string C in a given string S to mean the existence of a
substring of S that is within a speci#ed Hamming distance of C. That substring of S
is considered to be an (approximate) instance of C, and the string C is considered to
be an approximate substring of S. If C is an approximate substring of each string in
a set F of strings, then it is a common approximate substring for F.
Formally, given two strings x and y of the same length over an alphabet 	, the

Hamming distance between x and y is the number of positions at which the symbols
in x and y di<er. Over the last several years, a number of results have been derived
for restricted versions of the following problem involving Hamming distance:
COMMON APPROXIMATE SUBSTRING (CAS)

Instance: A set F= {S1; : : : ; Sm} of strings over an alphabet 	 such that
|Si|6n, 16i6m, and positive integers l and d such that 16l6n,
and 16d6l.

Question: Is there a string C∈	l such that for each string S ∈F, C is
Hamming distance 6d from some length-l substring of S?

We call C the center string for F. When comparing strings, we use the notation
dH (a; b) to denote the Hamming distance between strings a and b. When |a|¡|b|,
dH (a; b)= minb′∈B dH (a; b′), where B is the set of all substrings of b having length
|a|. When l= n, CAS is known as COVERING RADIUS [7] and CLOSEST STRING [11] and
has been investigated in the context of coding theory. When l6n, CAS is known as
CLOSEST SUBSTRING [11,12] and has been investigated in the context of DNA probe
design in molecular biology. All of these variants have been shown to be NP-hard by
results proved independently in [7,11] for CLOSEST STRING.

Though several CAS variants are admittedly trivial or are known to be solvable in low-
order polynomial time (when l¡n and d=0, i.e., LONGEST COMMON SUBSTRING), the
NP-hardness of the problems mentioned above suggest that the remaining CAS variants
are much more di7cult. Polynomial-time approximation algorithms seem a natural #rst
choice for solving these problems in practice. Several such algorithms for CLOSEST

SUBSTRING that give solutions within a multiplicative factor of 2 of the optimal value
of d are known [11,12], and a polynomial-time approximation scheme (PTAS) has also
recently been developed [13]. Unfortunately, the high degree of the polynomial in the
running time of the PTAS renders it of theoretical interest only. There are, however,
other less traditional routes to practical algorithms. The dependence of the NP-hardness
results [7,11] on the hardness of CLOSEST STRING, a special case where l= n, indicates
that this problem is worth investigating using #xed-parameter techniques, e.g. for l�
n. The CLOSEST STRING problem itself has been shown to be #xed-parameter tractable
when d is #xed, by an algorithm that solves it in O(nm+ md · dd) time [9].
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In this paper, we use techniques developed within the theory of parameterized com-
putational complexity [3] to systematically examine the possible types of useful non-
polynomial time algorithms for CAS. Such systematic treatments are useful both in
selecting algorithms that will operate most e7ciently on instances of these problems that
occur in practice and in guiding research on new algorithms for these problems [17].
Fixed-parameter techniques have previously been used to explore variants of #nding

common subsequences. A subsequence of a string s is a string composed of symbols
from s which may be separated by arbitrarily-sized gaps in s. Substrings, on the other
hand, must be composed of symbols occurring consecutively, without gaps; so all sub-
strings are subsequences, but some subsequences are not also substrings. For example,
given the string s= abcabdacb, the strings cabd, abc, and dac are all both substrings
and subsequences of s, while bcb and cda are only subsequences of s. The problem
of #nding a common subsequence of length l for m sequences, each of length n, is
NP-hard [14], and also hard to approximate [10]. Its variants have been examined
systematically using parameterized complexity; it is W [t]-hard for all t when parame-
terized by m and |	|, W [2]-hard when parameterized by l, and W [1]-complete when
parameterized by m and l together [2].
In the case of CAS, we show that useful algorithms are possible if the substring length

l is #xed together with the alphabet size |	|; more e<ective algorithms can result if
additional parameters are also restricted.

1.1. Parameterized complexity analysis

According to the theory of NP-completeness [8], an NP-hard problem does not have
a polynomial time algorithm (and hence cannot be solved quickly for all instances)
modulo the strength of the conjecture that P �=NP. However, restricted instances of some
NP-hard problems encountered in practice can be solved quickly by invoking non-
polynomial time algorithms. This is because the non-polynomial terms in the running
times of these algorithms are purely functions of sets of aspects of the problems that
are of bounded size or value in those instances, where an aspect of a problem is some
(usually numerical) characteristic that can be derived from instances of that problem,
e.g., |	|, d, l, and m in the case of CAS. When one or more aspects of a problem are
“#xed” in this manner, we indicate this by placing these aspects in parentheses after
the problem name, i.e., CAS with #xed alphabet size and #xed number of strings is
written as CAS(m; |	|).
The theory of parameterized computational complexity [3] provides explicit mech-

anisms for analyzing the e<ects of individual aspects on problem complexity. Within
this theory, a decision problem in which a set of aspects is #xed is called a parame-
terized problem and the set of #xed aspects is referred to as that problem’s parameter.
Given these notions, the most basic de#nition within this theory is that of a tractable
parameterized problem.

De#nition 1. A parameterized problem �(p) is #xed-parameter tractable if there ex-
ists an algorithm A to determine if instance x is in �(p) in time f(p) · |x|�, where
f :	+ �→ N is an arbitrary function and � is a constant independent of x and p.
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De#nition 2. A parameterized problem � belongs to the class FPT if � is #xed-
parameter tractable.

There are a variety of techniques for deriving FPT algorithms for parameterized
problems (see [3] and references therein). One can establish that a parameterized prob-
lem � is not #xed-parameter tractable by using a parametric reduction 4 to show that �
is hard for any of the classes of the W -hierarchy= {W [1]; W [2]; : : : ; W [P]; XP}. These
classes are the parameterized analogs of the class NP in the theory of NP-completeness.
They are, for the most part, based on a series of successively more powerful solution-
checking circuits in which solutions are encoded as input vectors to these circuits and
parameters are encoded in the weights of these input vectors.

De#nition 3. A boolean circuit �n with input x= x1x2 · · · xn of length n is a directed
acyclic graph. The nodes of fan-in 0 are called input nodes and are labeled from the
set {0; 1; x1; Ox1; x2; Ox2; : : : ; xn; Oxn}. The nodes of fan-in greater than 0 are called gates and
are labeled either AND or OR. A special node is designated the output node. The size
is the number of nodes and the depth is the maximum distance from an input node
to the output node. A truth assignment is a binary vector x= x1 : : : xn ∈{0; 1}n, where
value assigned to the ith input node is 1 if and only if xi=1.

De#nition 4. A gate is said to have unbounded fanin if the number of inputs to that
gate exceeds some constant bound. The weft of a decision circuit is the maximum
number of gates with unbounded fanin on any path from the input variables to the
output node.

WEIGHTED WEFT t DEPTH h CIRCUIT SATISFIABILITY (WCSt; h)

Instance: A weft t depth h decision circuit C.
Parameter: A positive integer k.
Question: Does C have a weight k satisfying truth assignment? A weight k

satisfying truth assignment is a truth assignment to the inputs of
C that both satis#es C, and assigns the value 1 to exactly k input
nodes.

De#nition 5. Let t be a positive constant. A parameterized problem � belongs to the
class W [t] if � parametrically reduces to WCSt; h for some h.

De#nition 6. A parameterized problem � belongs to the class W [P] if it parametrically
reduces to WCSt; h. Note that t and h are not explicitly restricted, but required by the
de#nition of a parameterized reduction to be polynomial functions of |�|.

4 Given parameterized problems �(p) and �′(p′), �(p) parametrically (many-one) reduces to �′(p′)
if there is an algorithm A that transforms an instance x of �(p) into an instance x′ of �′(p′) such that A
runs in f(p)|x|� time for an arbitrary function f independent of x and a constant � independent of both x
and p, p′ = g(p) for some arbitrary function g, and x∈�(p) if and only if x′∈�′(p′).
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De#nition 7. A parameterized problem � belongs to the class XP if there exists an
algorithm A to determine if instance (x; y) is in � in time f(y) · |x|g(y), where
f :	+ �→N and g :	+ �→N are arbitrary functions.

These classes have the following inclusions:

FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P] ⊆ · · · ⊆ XP:

If a parameterized problem can be shown to be C-hard for any class C in the W hier-
archy above FPT, then that problem is not in FPT (and hence is not #xed-parameter
tractable) modulo the strength of the conjecture that FPT �=C.
The following lemma is used in the analyses given in later sections of this paper;

it exploits NP-hardness results relative to constant-valued aspects to conjecture a weak
form of #xed-parameter intractability for certain parameterized problem variants.

Lemma 8 (Wareham [17, Lemma 2.1.35]). Given a set S of aspects of a decision
problem �, if � is NP-hard when the value of every aspect s∈ S is ?xed, then
the parameterized problem �(S) is not in XP unless P=NP.

The nature of the COMMON APPROXIMATE SUBSTRING PROBLEM is that relations exist
between many of the parameters. The following lemma is used to extend results by
simply noting these relations.

Lemma 9. Let C be a class in the W -hierarchy and let � be a parameterized problem
with parameters k1 and k2. If there exists some function f, such that k16f(k2) for
all instances of �,
(1) If �(k1)∈C, then �(k2)∈C,
(2) If �(k2) is C-hard, then �(k1) is C-hard.

Section 2 describes CAS problem variants that are #xed-parameter tractable. For most
variants not known to be in FPT, Section 3 gives hardness results for various classes
of the W -hierarchy. In Section 4 we describe circuits used to establish membership of
variants in the W -hierarchy. All parameterized analyses in these sections were done
relative to the following aspects:
• the size of the alphabet (|	|),
• the number of strings in F(m),
• the length of the strings in F(n),
• the length of the requested substrings (l), and
• the Hamming distance threshold (d).
All results derived within or implied by these analyses are summarized in Table 1.
Although n is usually considered to be large with respect to other problem aspects, we
include it in our analyses for the sake of completeness, and to provide an algorithm
for a large set of short strings over an unrestricted alphabet. Section 5 discusses impli-
cations of this work for related Common Subsequence problems. Section 6 gives some
promising directions for future research.
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Table 1
Parameterized complexity of COMMON APPROXIMATE SUBSTRING

Parameter — 	 m m;	

– NP-Complete =∈ XP W [2]-Hard W [2]-Hard
d W [2]-Hard, in W [P] in W [P] W [1]-Hard, in W [3] in W [2]
l W [2]-Complete FPT W [1]-Complete FPT
n FPT FPT FPT FPT

2. Fixed-parameter tractability results

Fixed-parameter tractable algorithms for COMMON APPROXIMATE SUBSTRING are of par-
ticular interest in computational biology for #nding short segments that approximately
occur in entire families of DNA or RNA sequences. These segments can be used
as DNA sequence primers, as probes to detect sequence presence and distinguish se-
quences, as complementary sequences to block binding sites, and as general sequence
family motifs (see [5,11] and references theirin). Typically these examples require
only small parameter values. For example, instances of CAS that occur in the design of
DNA primers for groups of sequences in molecular biology have very small values for
|	|, d, and l, e.g., |	|=4, d63, and l625 [5]. Similarly, a general search for com-
mon sequence motifs has produced a challenge problem in the computational biology
community—namely, CAS when n=600, m¿15, |	|=4, l=15, and d=4 [16].
Given numerical dependencies among problem aspects, with d6l6n and |	|6mn,

the following two algorithms are su7cient to establish the #xed-parameter tractability
of all tractable parameterized variants discussed in this paper. Note that algorithms
that restrict dependent aspects independently can attain lower complexities, and are
therefore superior for some applications [4].

Algorithm 1. Generate all possible strings of length l over 	 and examine each of
these strings to see if it is a center for F. There are |	|l such strings and each of
these strings can be checked in O(mnl) time; hence, the algorithm as a whole runs in
O(|	|lmnl) time and O(mn) space. This is essentially the #rst algorithm given in [18].
The advantage of this approach is that the total time and space required is a linear
function of the input size.

Algorithm 2. We introduce a new character x =∈	, called the blocking character. The
importance of x is that it always induces a mismatch when compared to a character
in F. Let C be a length l string containing at most d occurrences of the blocking
character x. Let s be a length l substring of string S ∈F. A substitution of C under s
is a set of modi#cations to C that replaces a subset of the occurrences of character x in
C with the characters appearing in corresponding positions of s. A minimal matching
substitution is a substitution that results in dH (C; s)6d, with the additional property that
no substitution replacing a subset of those same positions results in dH (C; s)6d (note
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that a minimal matching substitution need not be unique). As an example, consider
the strings acgta and axxxa. If axxxa is to be modi#ed so that it is a center for
acgta with maximum distance 1, then there are three minimal matching substitutions.
When applied to axxxa, the minimal matching substitutions produce the set of strings
{acgxa; axgta; acxta}.

The DEVELOPCENTER algorithm is based on the observation that to #nd a center,
it is su7cient to obtain a single occurrence of the center, then change characters in
up to d positions of that occurrence. When the algorithm begins, an arbitrary string
S ∈F is removed from F. For each length l substring s of S, let C= s, and for each
size d set of positions in C, change the characters at those positions to the block-
ing character x. The second stage of the algorithm proceeds recursively, developing a
center C by substituting characters of 	 back into positions occupied by the block-
ing character. For each recursive call, a string S ′ is arbitrarily removed from F. If
the center C currently being developed has distance at most d from some substring
of S ′, then another recursive call is made immediately. If all substrings of S ′ di<er
from C in more than d positions, alternative centers are produced by modifying C.
For each substring s∈ S ′, such that dH (s;C)62d, a set M of alternative centers is
obtained by making a minimal matching substitution to C under s. For each C′ in M ,
a recursive call is made, with C′ passed as the center to further develop. If the set F
becomes empty, then the center currently being developed is valid for the original set
of strings F (i.e., before any strings were removed), and the algorithm returns that
center.
The set M of alternative centers is de#ned as the set mm(C; s) of all strings C′

such that dH (s;C′)=d, dH (C′;C)=dH (s;C) − d, and for all 16p6l, C′[p]�=C[p]
implies that C[p] = x. The set mm(C; s) contains all strings obtained by making a
minimal matching substitution to C under s. Since all minimal matching substitu-
tions make the same number d′ =dH (s;C) − d of changes to blocking characters
in C,

|mm(C; s)| =
(
d
d′

)
6
(
d
d
2

)

and the set mm(C; s) can be computed in O(( d
d=2 )) time.

The DEVELOPCENTER algorithm, described below in pseudocode, accepts as input a
family of strings F= {S1; : : : ; Sm} and a string C. For the initial call to DEVELOPCENTER,
the string C given as input is the empty string %. The algorithm outputs a center for
F, if one exists.
DEVELOPCENTER(F;C)

1. if F= ∅ return C
2. if C= %
3. Let S be an arbitrary string in F.
4. for each length l substring s of S
5. C← s
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6. for each B⊆{1; : : : ; l}, such that |B|=d
7. ∀ positions p∈B, substitute C[p]← x
8. DEVELOPCENTER F\{S}, C
10. if C �=%
11. Let S be an arbitrary string in F.
12. branch ← true
13. for each length l substring s of S
14. if dH (s;C)6d then branch ← false
15. if branch = false then DEVELOPCENTER(F\{S}, C)
16. if branch = true
17. for each length l substring s of S such that dH (s;C)62d
18. Let M be the set mm(C; s).
19. for each C′ ∈M
20. DEVELOPCENTER(F\{S}, C′)

Consider the recursion tree of DEVELOPCENTER as the search space of the algorithm.
The time complexity of the algorithm has a factor of n

(l
d

)
representing the out degree

of the root of the search tree. A branch point refers to a string that the center must
accommodate through a substitution. Since there can be at most d substitutions for
blocking characters in a string, there are at most d branch points on any path from
root to leaf in the search space. The out degree at each branch point is at most n( d

d=2 ),
corresponding to the maximum number of substrings that must be tried, multiplied
by the maximum number of minimal matching substitutions that must be tried. The
maximum number of leaves in the search space is n( ld)(n(

d
d=2 ))

d and the length of any
path from root to leaf is m. At each node in the search tree, O(n) time is required
to determine if a branch is necessary. Hence, the time complexity of the algorithm
is bounded by O(n2m( ld)((

d
d=2 )n)

d). Of note is the absence of any exponential factor
involving alphabet size in this time complexity expression.

Theorem 10. Fixed-parameter tractability of COMMON APPROXIMATE SUBSTRING:
(1) CAS(|	|; l)∈FPT .
(2) CAS(n)∈FPT .

Proof. (1): Follows from Algorithm 1 above, which solves CAS in O(l|	|lnm)=
O(f(|	|; l)nm) time.
(2): Follows from the fact that d6l6n for CAS and Algorithm 2 above, which

solves CAS in O(lddd
2
nd+2m)=O(f(n)m) time.

The results in this theorem anchor all #xed-parameter tractability results for CAS

presented in this paper—in particular, all #xed-parameter tractability results in the
bottom row of Table 1 arise from Part (2) (in which n is #xed) and the remain-
ing #xed-parameter tractability results in this table arise from Part (1) (in which |	|
and l are #xed). The problem variants associated with most of the remaining sets
of aspects are intractable in the parameterized setting, as proved in the following
section.
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3. Parameterized Hardness Results

The hardness of several #xed-parameter variants of COMMON APPROXIMATE SUBSTRING
is proven here by parameterized reductions from problems with known parameterized
complexity. The following problems serve as source problems in our reductions:
CLIQUE [8, Problem GT19]

Instance: A graph G=(V; E).
Parameter: A positive integer k.
Question: Is there a set V ′⊆V of k vertices that is a clique of G (that is, a

set V ′ that forms a complete subgraph of G)?

DOMINATING CLIQUE [3, p. 463]

Instance: A graph G=(V; E).
Parameter: A positive integer k.
Question: Is there a set V ′⊆V of k vertices that is both a clique and a

dominating set of G (that is, a set V ′ such that each vertex in G
is either in V ′ or adjacent to a vertex in V ′)?

SET COVER [8, Problem SP5]

Instance: A set B of elements, a family of sets L such that Li⊆B; (16i
6|L|) and a positive integer k.

Parameter: A positive integer k.
Question: Is there a size k subset R⊆L such that

⋃
Rj∈R Rj =B?

3.1. The W [1]-hardness of CAS(m; l; d)

To show W [1]-hardness for CAS(m; l; d), we give a parameterized reduction from the
W [1]-complete problem CLIQUE [3]. Note that versions of this reduction were developed
independently in [4,6]. Let G=(V; E) be a graph for which we wish to determine
whether G has a k-clique. We construct a family F of m=f1(k) strings over alphabet
	 that has a center of length l=f2(k) if and only if G contains a k-clique. Assume
for convenience that the vertex set of G is V ={1; : : : ; |V |}.
Target parameters: The number of strings in F is m=f1(k)=( k2 ). The length of

center C is l=f2(k)=k + 2, and the maximum distance between instance and center
is d=f3(k)= k − 2. The maximum length of any string in F (which is not #xed in
the reduction) is n=f4(G; k)= (2k + 4)(|E|).
The alphabet: The string alphabet is 	=	1 ∪	2 ∪	3. We refer to these as vertex

characters (	1), unique characters (	2), and alignment characters (	3):

	1 = {1; : : : ; |V |};
	2 = {Set of characters occurring uniquely in F};
	3 = {A; B}:
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1 2 3

4 5 6

Fig. 1. Graph 1.

The characters of 	2 are denoted by u. All occurrences of this character are unique
characters.
Substring Gadgets: We next describe the two “high level” component substrings

used in the construction.
Edge Selectors:

〈edge(i; j)(p; q)〉 = Au(i−1)pu(j−i−1)qu(k−j)B:

Separators:

〈separator〉 = uk+2:

For the Edge Selectors, the index pair (i; j) speci#es a clique edge, and (p; q) spec-
i#es an edge, from the underlying graph, that may form the clique edge (i; j) in a size
k clique. The characters p and q in the speci#cation of Edge Selectors are from 	1.

The reduction: The ( k2 ) strings in F correspond to the ( k2 ) edges in a k-clique:

F = {Sij : 16 i ¡ j 6 k}:
String Sij is composed of edge components arranged in the following manner (where
product notation refers to concatenation):

Sij =
∏

(p;q)∈E
p¡q;i6p
j−i6q−p
q6|V |−k+j

〈edge(i; j)(p; q)〉〈separator〉:

An example of the reduction for the graph in Fig. 1 and a desired clique size 4 can
be seen in Fig. 2. Any center for F has the property that all positions other than the
terminal positions are occupied by vertex characters in ascending order.
The proof of correctness of this reduction exploits some interesting properties of F.

These properties are examined with the aid of the following de#nitions and conventions.
An instance that begins and ends with alignment characters is said to be in-phase.
Vertex positions are those positions in a string or substring occupied by characters from
	1 (the vertex characters). Note that for string Sij, the vertex positions are positions
i and j to the right of the initial alignment character. For any vertex position i, the
vertex group of i, denoted Vi, is de#ned as the set

Vi = {Six : i ¡ x 6 k} ∪ {Sxi : 16 x ¡ i}:
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S12: A12uuBu6A13uuBu6A14uuBu6A23uuBu6A24uuBu6

S13: A1u3uBu6A1u4uBu6A1u5uBu6A2u4uBu6A2u5uBu6

S14: A1uu4Bu6A1uu5Bu6A2uu5Bu6A3uu6Bu6

S23: Au23uBu6Au24uBu6Au25uBu6Au45uBu6

S24: Au2u4Bu6Au2u5Bu6Au3u6Bu6

S34: Auu36Bu6Auu45Bu6Auu56Bu6

Fig. 2. CAS(m; l; d) representation for Graph 1 (desired clique size k =4).

The intended role of Vi is that the instances of center C from Vi determine the character
at position i in C. Without loss of generality, it is assumed that no two instances can
come from the same string.

Lemma 11. Let C be a center for F. The following are true:
(1) C begins with character A and ends with character B.
(2) No position in C is occupied by a character from 	2.
(3) If I is an instance of C, then I is in-phase.
(4) The k − 1 instances from any vertex group are suBcient to completely

determine C.

Proof.
(1) Suppose C begins with a character other than A. Then the separation between A

and B in members of F prevents any instance from matching both A and B in C. In
order to match C at 4 positions, each instance must then match in a position occupied
by a character from 	2. Since there are only k − 2 such positions but ( k2 ) ¿ k − 2
instances, then by the pigeonhole principle this results in a contradiction with the
uniqueness of the characters in 	2.
(2) Suppose C contains a character from 	2 in position z. Then at most one instance

matches C at position z. Consider the vertex group Vz. Any instance from Vz that
matches C out-of-phase must determine a unique character, since it cannot match both
A and B. Suppose some instance from Vz matches C in phase. Then it does not match
C at position z and therefore must determine a unique character. Since all instances
from Vz determine unique characters, and |Vz|= k−1, at most one instance can match
C at 4 positions, contradicting the fact that C is a center for F.
(3) Suppose some instance matches the center out-of-phase, then that instance cannot

match both A and B and so must match some position containing a character from 	2,
contradicting Part 2.
(4) Suppose C has been partially determined by instances from V′

z ⊂Vz, for ver-
tex position z. Consider instance I from Sz;x ∈Vz\V′

z . By Parts (2) and (3), I must
match the alignment positions, and positions z and x. Since I is the only mem-
ber of Vz that can determine a non-unique character at position x, that position has
not yet been determined. In order for I to match 4 positions of C, I must deter-
mine position x in C. The #rst instance determines 4 positions in the center, and
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the remaining k − 2 instances each determine an additional position, a total of k + 2
positions.

Lemma 12. CLIQUE parametrically reduces to CAS(m; l; d).

Proof. The construction described above runs in time that is #xed-parameter tractable
relative to m, l, and d, so we need only show that the reduction is correct. Suppose there
is a k-clique in G. Given the vertices in a clique, place their corresponding characters
from 	1 in ascending order between characters A and B. The resulting string is clearly
a center for F, with instances being the Edge Selectors corresponding to the edges
in the k-clique from G. Conversely, suppose there is a center C for a set of strings
F, constructed from a graph G as per the reduction described above. By Lemma 11,
all instances match C at exactly 2 positions occupied by characters from 	1. By the
reduction, there are ( k2 ) edges in G incident on a total of k vertices. Hence there is a
clique of size k in G.

Theorem 13. CAS(m; l; d) is W [1]-hard.

Proof. Follows from Lemma 12 and the W[1]-hardness of CLIQUE [3].

3.2. The W [2]-hardness of CAS(l; d)

To show W [2]-hardness for CAS(l; d), we give a parameterized reduction from the
W [2]-complete problem DOMINATING CLIQUE [3]. Let G=(V; E) be a graph for which
we wish to determine whether G has a dominating clique of size k. We construct a
family F of m strings, over alphabet 	, that has a common approximate substring
of length l and distance d if, and only if, G contains a dominating clique of size k.
Assume for convenience that the vertex set of G is V = {1; : : : ; x}. The alphabet and
substring gadgets are exactly the same as for the reduction in Section 3.1.
The target parameters: The number of strings in F is m=f1(k; G)=

(k
2

)
+ |V |,

which is no longer independent of |G|. The functions f2 to f4 remain as de#ned for
the reduction in Section 3.1.
The reduction: The strings form two groups F=FGE ∪FGV having distinct roles.

The ( k2 ) strings in FGE are exactly those described in the previous reduction. These
have the same role: determining a center that corresponds to a k-clique in G.
The strings of FGV are responsible for verifying that any center determined by

instances from FGE corresponds not only to a k-clique, but to a dominating set as
well:

FGV = {SVp : 16 p6 |V |}:

String SVp is composed of all edge components having the character q∈	1 such
that q is a neighbor of p. The components are arranged in the following manner
(where product notation refers to concatenation and for any vertex x, N [x] is the set of
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1

2

4

3

5

Fig. 3. Graph 2.

S12: A12uBu5A14uBu5A23uBu5A24uBu5A34uBu5

S13: A1u4Bu5A2u4Bu5A3u5Bu5

S23: Au23Bu5Au24Bu5Au34Bu5Au35Bu5

SV1 : A12uBu
5A14uBu5A23uBu5A24uBu5A34uBu5

A1u4Bu5A2u4Bu5Au23Bu5Au24Bu5Au34Bu5

SV2 : A12uBu
5A14uBu5A23uBu5A24uBu5A34uBu5

A1u4Bu5A2u4Bu5A3u5Bu5Au23Bu5Au24Bu5

Au34Bu5Au35Bu5

SV3 : A12uBu
5A14uBu5A23uBu5A24uBu5A34uBu5

A1u4Bu5A2u4Bu5A3u5Bu5Au23Bu5Au24Bu5

Au34Bu5Au35Bu5

SV4 : A12uBu
5A14uBu5A23uBu5A24uBu5A34uBu5

A1u4Bu5A2u4Bu5A3u5Bu5Au23Bu5Au24Bu5

Au34Bu5Au35Bu5

SV5 : A23uBu
5A34uBu5A3u5Bu5Au23Bu5Au34Bu5

Au35Bu5

Fig. 4. CAS(l; d) representation for Graph 2 (desired dominating clique size k =3).

neighbors of x):

SVp =
∏

q∈N [p]
q′∈N [q]

16i¡j6k

{ 〈edge(i; j)(q′; q)〉〈separator〉 if q′ ¡ q;
〈edge(i; j)(q; q′)〉〈separator〉 if q ¡ q′:

An example of this reduction for the graph in Fig. 3 and a desired dominating clique
size of 3 can be seen in Fig. 4.

Lemma 14. DOMINATING CLIQUE parametrically reduces to CAS(l; d).

Proof. The construction described above runs in time that is #xed-parameter tractable
relative to l and d, so we need only show that the reduction is correct. As was shown
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in Lemma 12, a center for FGE can be obtained from any k-clique in G. Suppose
some V ′⊂V is both a k-clique and a dominating set for G. For all vertices p∈V ,
there exists vertex q∈V ′ such that pq∈E. The substring of SVp that encodes any of
the k − 1 clique edges incident on vertex p may serve as an instance for the center.
Therefore a dominating k-clique in G implies a center for F.
Suppose there is a center C for F. By the reduction in Section 3.1, C speci#es

a k-clique in G. Since C has instances in all strings from FGV , and those instances
match C at 2 positions occupied by characters of 	1, the corresponding vertices in V
are adjacent to a vertex in the clique speci#ed by C. Hence there is a size k dominating
clique in G.

Theorem 15. CAS(l; d) is W[2]-hard.

Proof. Follows from Lemma 14 and the W [2]-hardness of DOMINATING CLIQUE [3].

3.3. The W [2]-hardness of CAS(m; |	|)

To show W [2]-hardness for CAS(m; |	|), we give a parameterized reduction from the
W [2]-complete problem SET COVER [3]. This result both strengthens and complements
the W [1]-hardness result given in [6] for CAS(m; |	|) when |	|=2.
Let I = 〈B;L〉 be an instance of SET COVER. Without loss of generality, assume that

the elements of B are the integers [1; |B|]. We show how to construct an instance F
of CAS(m; |	|) such that I has a cover of size k if and only if F has a center with a
particular maximum distance to any instance.
Target parameters: The number of strings in F is m=f1(k)= 2k. The length of

the center C is l=f2(L; k)= k|B| + 2, and the maximum distance between instance
and center is d=f3(L; k)= (k − 1)|B|. The maximum length of the strings in F is
n=f4(L; k)= 2(k|B|+ 2) · |L| − 1, and the alphabet size is |	|=f5(k)= 3k + 1.
The alphabet: The string alphabet is 	=	1 ∪	2 ∪{A}. We refer to these as solution

characters (	1), unique characters (	2) and the alignment character (A), with

	1 = {s1; : : : ; sk};
	2 = {u11; u12; u21; u22; : : : ; uk1; uk2}:

For 16i6k, we assume without loss of generality that character si is the integer i.
The characters of 	2, denoted by u with subscripts, are identical within a string, but
di<erent between strings.
Substring gadgets: We next describe the three “high level” component substrings

used in the construction. For Membership Indicators, the product is ordered and refers
to concatenation.
Fillers:

〈Filler(i)〉 = s(k−1)|B|
i

Separators:

〈Separator(i; p)〉 = u(k|B|+2)
ip
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Subset indicators:

〈Subset(i; j; p)〉 = ∏
b∈B

g(i; j; p; b)

The Fillers are strings of length (k − 1)|B| and each corresponds to some Li ∈L.
The Separators are strings of length k|B|+2. Each is comprised entirely of characters
from 	2, and the variable p takes values from {1; 2}. The Subset Indicators are used
to indicate the sets that make up a cover. The function g is de#ned as

g(i; j; p; b) =
{
si if b ∈Lj;
uip otherwise:

The reduction: Each of the k sets in the solution R of I is represented by a pair of
strings in F. In particular, the instances in strings Si1; Si2 ∈F correspond to the ith
set in R. De#ne

Si1 =
∏

16j6|L|
A〈Subset(i; j; 1)〉〈Filler(i)〉A〈Separator(i; 1)〉;

Si2 =
∏

16j6|L|
A〈Subset(i; j; 2)〉〈Filler(i)〉A〈Separator(i; 2)〉:

The family of strings is then F= {S11; S12; S21; S22; : : : ; Sk1; Sk2}. Note that no matter
what set of substrings is taken as instances of a center, aside from the positions contain-
ing alignment characters, any position has at most two strings with the same character.
An example of this reduction is provided in Figs. 5–7.
For Fig. 6, the subscripts are left out of the unique characters; these are given unique

symbols in Fig. 7.
De#ne Od as the minimum possible value of d for a set of instances. The proof of

correctness for this reduction rests on a function d̂ that provides a lower bound on
Od. For a collection of potential instances of a center string for F, de#ne zij as the
indicator function that has the value 1 if Si[j] is not the column majority character in
column j of the aligned instances and the value 0 otherwise (in case there are two or
more characters that may serve as column majority, one is arbitrarily selected). Given

B: {1; 2; 3; 4; 5; 6; 7}
L1: {1; 4; 6}
L2: {1; 2; 4}
L3: {3; 5}
L4: {1; 2; 3; 7}
k: 3

Fig. 5. Example instance of SET COVER.
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S11 : A1uu1u1u114Au23A11u1uuu114Au23Auu1u1uu114Au23A111uuu1114Au23

S12 : A1uu1u1u114Au23A11u1uuu114Au23Auu1u1uu114Au23A111uuu1114Au23

S21 : A2uu2u2u214Au23A22u2uuu214Au23Auu2u2uu214Au23A222uuu2214Au23

S22 : A2uu2u2u214Au23A22u2uuu214Au23Auu2u2uu214Au23A222uuu2214Au23

S31 : A3uu3u3u314Au23A33u3uuu314Au23Auu3u3uu314Au23A333uuu3314Au23

S32 : A3uu3u3u314Au23A33u3uuu314Au23Auu3u3uu314Au23A333uuu3314Au23

Fig. 6. CAS(m; |	|) representation for the example instance of SET COVER given in Fig. 5. The character
u denotes a character that di<ers across strings. The underlined substrings are expanded and explained
in Fig. 7.

S11[1]: A1aa1a1a11111111111111A
S12[1]: A1bb1b1b11111111111111A
S21[93]: Acc2c2cc22222222222222A
S22[93]: Add2d2dd22222222222222A
S31[139]: A333eee333333333333333A
S32[139]: A333fff333333333333333A

Center String: A333121311111222222333A

d = (k − 1)|B| = 14.

Fig. 7. Expanded diagrams of the substrings underlined in Fig. 6, along with an optimal center string for
the instances. Underlined characters are those matching corresponding positions in the center.

zij, function d̂ is de#ned as follows:

d̂ =

⌈∑l
j=1

∑m
i=1 zij

m

⌉
:

Lemma 16. d̂6 Od.

Proof. Let F be a set of strings and X be a set of instances for an optimal center C
for F. The character at each position j will cause at least

∑m
i=1 zij mismatches between

C and members of X . Since there are l positions in C, there are at least
∑l

j=1

∑m
i=1 zij

mismatches between C and members of X . The largest distance between C and any
member of X must be at least the smallest integer not less than the arithmetic mean
of the total distance, which is �(∑l

j=1

∑m
i=1 zij)=m�.

As a corollary to Lemma 16, the following lemma is derived by substituting the
appropriate values into the formula for d̂.
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Lemma 17. If the column majority character occurs at most twice in any column,
then Od¿l− 2l=m.

Lemma 18. Let F be a set of strings constructed as described in the reduction and
let C be a center for F. Then C must begin and end with the alignment character,
and so must all instances.

Proof. Suppose the center C does not begin with the alignment character; then by the
separation between alignment characters in members of F, no instance can match two
alignment characters in C. As all but one column has at most two occurrences of the
column majority character, we can rewrite the bound on Od given in Lemma 17 with
the substitutions m=2k and l= k|B| + 2 to obtain Od¿(k − 1)|B| + 2(k − 1)=k. A
symmetric argument establishes that C must end with the alignment character.
Suppose some instance begins or ends with a character other than the alignment

character. Then that instance cannot match C at those positions. Again using Lemma
17, Od¿(k − 1)|B|+ (k − 1)=k.

Lemma 19. SET COVER parametrically reduces to CAS(m; |	|).

Proof. The construction described above runs in time that is #xed-parameter tractable
relative to m and |	|. Hence, we need only show that the reduction is correct.
Suppose there is a cover R for B, such that |R|= k. From R, construct a center C

for F as follows. (1) The #rst and last positions of C are assigned the alignment
character A. (2) The next |B| positions, used to represent elements of the base set, are
each assigned a character indicating one of the sets in R that covers the corresponding
element. For each b∈B, choose some Li ∈R, such that b∈Li, as covering b. Since
R is a cover for B, there is at least one such choice for every b∈B. If Li is chosen
to cover b, then si is assigned to position b + 1 in C (recall that the elements of B
have been equated with the integers 1 to |B|). (3) The remaining (k − 1)|B| positions
of C correspond to the Filler gadgets. For each Li ∈R, if xi positions (06xi6|B|)
of C have been assigned characters corresponding to elements in Li, then |B| − xi
positions in the Filler part of C are assigned the character si. If Lj ∈L is the ith set
in R, then the substring of Si1 (and of Si2) that begins and ends with the alignment
character, and contains the jth Subset Indicator, matches C in exactly 2+ |B| positions.
Therefore C is a center for F with distance exactly (k − 1)|B| to any instance.
Suppose there is a (k − 1)|B| center C for F constructed as per the reduction from

an instance of SET COVER. By Lemma 17, the column majority character occurs at least
twice in each column, implying all but the #rst and last positions of C are occupied
by solution characters (i.e., from 	1). For each distinct i and i′, the instances of C
from Si1 and Si′1 match C at distinct sets of positions. Consider the k instances of C
from Si1, 16i6k. The sets of positions in C that are matched by these instances must
collectively match all positions of C. Hence the corresponding subsets from L cover
all elements of B.

Theorem 20. CAS(m; |	|) is W [2]-hard.
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Proof. Follows from Lemma 19 and the W [2]-hardness of SET COVER [3].

3.4. Other hardness results

Theorem 21. CAS(|	|) is not in XP unless P=NP.

Proof. Follows from the NP-hardness of CLOSEST STRING (and hence CAS) when |	|=2
[7] and Lemma 8.

4. Membership results for the W-hierarchy

To show inclusion of parameterized variants of COMMON APPROXIMATE SUBSTRING in
classes of the W hierarchy, solution checking circuits of limited weft (layers of gates
with unlimited fanin) are needed. The following three di<erent circuits use distinct
strategies to test solutions for various parameterizations of CAS. These are called the
center testing circuit, the instance testing circuit and the single instance + modi?ca-
tions testing circuit.

4.1. Center testing circuit

Let F= {S1; : : : ; Sm} be an instance of CAS, and C is any center for F. The jth
length-l substring of Si is denoted Si[j]. The set X is be used to index size l − d
subsequences of a length-l string. Note that each Xp is an ordered l− d tuple:

X =
{
Xp : Xp ⊂ (1; : : : ; l); |Xp| = l− d; 16 p6

(
l
d

)}
:

Let A= {a[i; j; p; q] : 16i6m; 16j6n − l + 1; 16p6|X |; 16q6l − d} denote
position q in Xp ∩ Si[j]. Let B= {b[u; v] : 16u6l; 16v6|	|} be a set of boolean
variables. The intended interpretation of variable b[u; v] is that character v occupies
position u in C. The variable a[i; j; p; q] take on the value of b[u; v] if and only if
position q of Xp is u and that position is occupied by character v in Si[j], otherwise
a[i; j; p; q] is set to 0.
Let E=E1E2 be the boolean expression over the set of variables B, where:

E1 =
l∏

u=1

∏
16v¡v′6|	|

(¬b[u; v] + ¬b[u; v′]);

E2 =
m∏
i=1

n−l+1∑
j=1

|X |∑
p=1

l−d∏
q=1

a[i; j; p; q]:

For example consider the set of strings S1 = tggtca, S2 = accgac, and S3 = cggtag over
alphabet 	= {a; c; g; t}. We assume the order a=1, c=2, g=3 and t=4 on 	.
If Xp=(1; 2; 3), then a[1; 1; p; 1]= b[1; 4] because both correspond to the character
t at position 1 in a length-l string. Similarly, a[3; 1; p; 1]= b[1; 2] corresponding to



P.A. Evans et al. / Theoretical Computer Science 306 (2003) 407–430 425

c at position 1 and if Xp=(1; 3; 5), then a[2; 2; p; 2]= b[4; 3] corresponding to g at
position 4.
The purpose of E1 is to force a correspondence between satisfying interpretations

and strings over 	l. Notice that a weight l interpretation falsi#es E1 if more than one
b[i; j] is assigned true for any i.
We claim that E has a weight l truth assignment if, and only if, there exists a center

C for F. If C exists, it is easy to verify that a truth assignment corresponding to C
satis#es E. Conversely, let T be a weight l satisfying truth assignment for E. The
clauses of E1 ensure that T indicates a unique string s∈	l. The clauses of E2 ensure
that for each i, some substring Si[j] matches l− d positions of s. This implies that in
each Si, there is a substring of length l that is distance less than d from s. Therefore
s is a center for F.

Theorem 22. CAS(l)∈W [2] and CAS(m; l)∈W [1].

Proof. Follows by observing that when l is #xed, the center testing circuit has weft
2. If m is #xed along with l, the center testing circuit has weft 1.

4.2. Instance testing circuit

We construct a new circuit, called the instance testing circuit, having little resem-
blance to the center testing circuit. Our goal here is to show membership for versions
of CAS when l is left free. The idea this time is to select m instances and, for each
instance, d positions where the instance is exempted from having to match a center.
The circuit is only a slight modi#cation of a circuit that solves the length-l common
substring problem.
Let B= {b[i; j] : 16i6m; 16j6n − l + 1} be a set of boolean variables with the

intended interpretation that b[i; j] is set true when Si[j] is an instance of C. Let
W = {w[i; r; p] : 16i6m; 16r6d; 16p6l} be a set of boolean variables with the
intended meaning that any instance of C in Si need not match C at position p. The
index r is used to restrict the number of such exemptions to be not more than d for any
instance. In the description of the circuit, the set of variables A= {a[i; j; p; q] : 16i6m;
16j6n − l + 1; 16p6l; 16q6|	|} act as an alias for the variables from B. As
for the center testing circuit, for any occurrence of the variable a[i; j; p; q], the sub-
stitution a[i; j; p; q]← b[i; j] is assumed exactly when Si[j] has character q at position
p. Otherwise a[i; j; p; q] takes the value false.
Let E=E1E2E3 be the boolean expression over the set of variables of B∪W , where:

E1 =
m∏
i=1

∏
16j¡j′6n−l+1

(¬b[i; j] + ¬b[i; j′]);

E2 =
m∏
i=1

d∏
r=1

∏
16p¡p′6l

(¬w[i; r; p] + ¬w[i; r; p′]);

E3 =
l∏

p=1

|	|∏
q=1

m∏
i=1

(
d∑
r=1

w[i; r; p] +
n−l+1∑
j=1

a[i; j; p; q]

)
:
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We claim that E has a weight m + md satisfying truth assignment if, and only if,
there is a center C for F. Given center C, a satisfying truth assignment for E can
be obtained by setting b[i; j] to true for each instance Si[j] of C, and also setting
w[i; r; p] to true if the rth mismatch in the instance from Si occurs at position p. For
the converse case, let T be a weight m + md satisfying truth assignment for E. The
clauses of E1 ensure that T corresponds to at most m instances, one from each Si.
The clauses of E2 ensure that at most d mismatching positions are selected for the
instance from any Si. E1 and E2 combined force T to correspond directly to a set of
instances and, for each instance, a set of positions where each instance may di<er from
a center. The fact that T satis#es E3 implies that all instances agree in all positions
with the possible and permitted exception of the exempted positions. Hence F has a
center.

Theorem 23. CAS(m; d)∈W [3] and CAS(m;	; d)∈W [2].

Proof. Follows by observing that when m and d are #xed, the instance testing circuit
has weft 3. If, additionally, |	| is #xed, the weft of the instance testing circuit is
reduced by one.

4.3. Single instance + modi?cations testing circuit

The idea behind this circuit comes from the observation that a center can be obtained
by isolating an arbitrary string from F (we use S1), and applying substitutions for
characters in up to d positions in each substring S1[j] of S1. We use a guess and
test strategy: #rst guess a center by selecting some S1[j], along with the positions and
characters by which the center di<ers from S1[j], then test the center by searching
for an instance in each Si, 26i6m. The goal here is to have a weight d + 1 truth
assignment represent the selection of some j (16j6n− l+1), and d substitutions to
positions of S1[j] that transform S1[j] into a center.

To describe the input to the circuit, we use the following sets of variables:

X1 = {x1[i; j; p; r] : 16 i 6 m; 16 j 6 n− l+ 1; 16 p6 l; 16 r 6 |	|};

X2 = {x2[j] : 16 j 6 n− l+ 1};

X3 = {x3[p; r] : 16 p6 l; 16 r 6 |	|}:

where the value of x1[i; j; p; r] corresponds to the truth of Si[j] being occupied by
character r at position p (these values are #xed for each instance and are not part of a
truth assignment). The weight d+1 truth assignment comes from selecting exactly one
member of X2 (representing a substring of S1) and d members of X3(representing the
substitutions). Once the center has been “guessed”, it remains to test it against potential
instances from the other strings in F. Unlike the center testing circuit above, l is not
#xed, so we cannot use the same strategy to test the “guessed” center.
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The set of variables {g[p; r] : 16p6l; 16r6|	|} describes the “guessed” center,
where

g[p; r] =

(
n−l+1∑
j=1

(x2[j] · x1[1; j; p; r])
)
·


 ∏

16r′6|	|
r′ �=r

¬x3[p; r′]


+ x3[p; r]:

The lower layers of the circuit are described by the variables

B = {b[i; j; p] : 26 i 6 m; 16 j 6 n− l+ 1; 16 p6 l};
with the interpretation that b[i; j; p] = true if, and only if, Si[j] matches the guessed
center at position p or is one of at most d mismatches.
Members of B occur at di<erent depths. We stack the variables of B so that b[i; j; p]

depends on variables used to generate b[i; j; p − 1]. The purpose of this is to prevent
having to count the number of mismatches (between the guessed center and an instance)
at a single level. To do so would introduce an exponential number of gates. The strategy
we use is to maintain a count of the amount of permitted mismatches, a count that
is decremented each time a mismatch occurs. The set of variables A implement the
counter for each Si[j]:

A = {a[i; j; p; q] : 26 i 6 m; 16 j 6 n− l+ 1; 06 p6 l; 16 q6 d+ 1};
such that

a[i; j; p; q] =

(
a[i; j; p− 1; q] ·

|	|∑
r=1

(g[p; r] · x1[i; j; p; r])
)

+ a[i; j; p− 1; q+ 1]:

For all i,j and p, the value of a[i; j; p; d+1] is set to false, and for all i,j and q, the
value of a[i; j; 0; q] is set to 1.
We now de#ne the variables of B:

b[i; j; p] = a[i; j; p; 1] +
|	|∑
r=1

(g[p; r] · x1[i; j; p; r]):

The circuit C is described by expression E=E1E2E3 de#ned as:

E1 =
∏

16j¡j′6n−l+1
(¬x2[j] + ¬x2[j′]);

E2 =
l∏

p=1

∏
16r¡r′6|	|

(¬x3[p; r] + ¬x3[p; r′]);

E3 =
m∑
i=2

n−l+1∑
j=1

l∑
p=1

b[i; j; p]:

It is easily veri#ed that the circuit is satis#ed if, and only if, some “guess” matches at
least l− d positions in at least one substring for every member of F. The size of the
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circuit is O(nml(|	|+ d)). The depth of the circuit is O(l) since, for each i; j and r,
there is a path passing through a[i; j; 1; r] ; a[i; j; 2; r] : : : a[i; j; l; r].

Theorem 24. CAS(d)∈W[P].

Proof. Follows from the fact that when d is #xed and all other parameters left free,
the single instance + modi?cations circuit has weft O(l).

5. Implications for common subsequence problems

Suitable parameterizations may also be used to extend results derived for one prob-
lem to related problems, and hence to highlight factors a<ecting the complexities of
related problems. For example, consider the following extension of CAS stated relative
to subsequences rather than substrings:

COMMON APPROXIMATE SUBSEQUENCE (CASEQ)

Instance: A set F = {S1; : : : ; Sm} of strings over an alphabet 	 such that
|Si|6n, 16i6m, and positive integers l and d such that 16l6n
and 06d6l.

Question: Is there a string C∈	l such that for each string S ∈F , C is Ham-
ming distance 6d from some length-l subsequence of S?

De#ne g to be the maximum separation between any two symbols in a subsequence
instance of center string C in any string in F (for example, given string s= axxxbyyc
and C= abc, g=3). A number of common string problems can now be seen as sub-
cases of, and hence are related to, CASEQ under appropriate restrictions of d and g,
i.e.,
• CASEQ(d=0; g=0)⇒ LONGEST COMMON SUBSTRING

• CASEQ(d¿0; g=0)⇒ COMMON APPROXIMATE SUBSTRING

• CASEQ(d=0; g¿0)⇒ LONGEST COMMON SUBSEQUENCE (LCS)

• CASEQ(d¿0; g¿0) ⇒ COMMON APPROXIMATE SUBSEQUENCE

All hardness results derived in this paper for CAS thus also hold for the corresponding
parameterized versions of CASEQ; moreover, some of these variants are hard for higher
levels of the W -hierarchy through hardness results for LCS [1,2]. It is an open problem
whether any of the #xed-parameter tractability results for CAS or LCS apply to CASEQ. In
any case, the above illustrates the relative importances of exact vs. approximate sym-
bol occurrence and symbol position in common-string problems through the increase in
complexity from LONGEST COMMON SUBSTRING, which is solvable in low-order polyno-
mial time, to CASEQ, which is intractable in both polynomial-time and #xed-parameter
settings.
The CASEQ problem can also be viewed as an extension of CAS, where the de#nition

of “approximate” has been altered to allow limited insertions into the center string
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C. This de#nition can be further extended to allow for limited deletions from C as
well.

6. Conclusions and future research

In this paper, we have derived the complexities of many parameterized variants
of the COMMON APPROXIMATE SUBSTRING problem. These results, along with all results
implied by the dependencies d6l6n, are summarized in Table 1. For #xed-parameter
tractable variants, further research is necessary in order to #nd algorithms whose time
and space requirements are most suited to the parameter restrictions inherent in speci#c
applications. For example, optimal algorithms for probe and primer design, whose
instances have larger lengths and smaller distances, are probably di<erent from optimal
algorithms for general motif #nding, whose instances have smaller lengths but longer
distances. Faster specialized algorithms can arise if other problem aspects are #xed in
addition to the minimum set needed for #xed-parameter tractability [4,5,15].
Parameterized complexity analysis enables us to determine the e<ect of each aspect

of a problem on that problem’s complexity and to isolate those critical aspects or sets
of aspects that can be #xed to yield useful algorithms for speci#c applications. In
the case of CAS, #xing |	| and l together produces #xed-parameter tractability, as does
#xing n. Fixing m in addition to l does not produce a #xed-parameter tractable solution,
but does reduce the complexity of the machinery needed to check solutions. While the
proven results for the #rst two rows of Table 1 are di<erent, they are not incompatible;
#xing d, without restricting l, has as yet no proven impact on problem complexity.
Several cells in the table have room for further investigation and potential improvement,
such as the di<erences between hardness and membership classes for CAS(m; d) and
CAS(d). Two variants, CAS(|	|; d) and CAS(m; |	|; d), have neither a hardness nor a
#xed-parameter tractability result, making them prime candidates for future work. Their
class membership is also a possible target for incremental improvement. We have also
shown how the CAS hardness results can be transferred to a related problem that uses
subsequences instead of substrings. This problem inherits many hardness results from
both its substring and subsequence variants; a thorough investigation of it would extend
this comprehensive parameterized analysis, and link the results here with previous
results for #nding common subsequences.
This investigation into the COMMON APPROXIMATE SUBSTRING problem has thus re-

vealed the e<ects of various aspects and aspect interactions on that problem’s com-
plexity, as well as likely avenues for future development of exact algorithms.
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