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The free-living flatworm, Macrostomum lignano has an impressive
regenerative capacity. Following injury, it can regenerate almost
an entirely new organism because of the presence of an abundant
somatic stem cell population, the neoblasts. This set of unique
properties makes many flatworms attractive organisms for study-
ing the evolution of pathways involved in tissue self-renewal, cell-
fate specification, and regeneration. The use of these organisms as
models, however, is hampered by the lack of a well-assembled and
annotated genome sequences, fundamental to modern genetic
and molecular studies. Here we report the genomic sequence of
M. lignano and an accompanying characterization of its transcrip-
tome. The genome structure of M. lignano is remarkably complex,
with ∼75% of its sequence being comprised of simple repeats and
transposon sequences. This has made high-quality assembly from
Illumina reads alone impossible (N50 = 222 bp). We therefore gen-
erated 130× coverage by long sequencing reads from the Pacific Bio-
sciences platform to create a substantially improved assembly with
an N50 of 64 Kbp. We complemented the reference genome with an
assembled and annotated transcriptome, and used both of these
datasets in combination to probe gene-expression patterns during
regeneration, examining pathways important to stem cell function.
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Flatworms belong to the superphylum Lophotrochozoa, a vast
assembly of protostome invertebrates (1, 2) (Fig. 1A). The

evolutionary relationships within this clade are poorly resolved
and the specific position of flatworms is currently debated (3, 4).
Flatworms have attracted scientific attention for centuries because
of their astonishing regenerative capabilities (5, 6), as well as their
ability to “degrow” in a controlled way when starved (7). As far
back as the early 1900s, Thomas Morgan recognized the potential
of flatworms and conducted a number of fascinating regeneration
experiments on planarian flatworms before his focus shifted to
Drosophila genetics (8).
Macrostomum lignano is (Fig. 1B), a free-living, regenerating flat-

worm isolated from the coast of the Mediterranean Sea.M. lignano is
an obligatorily cross-fertilizing simultaneous hermaphrodite (9) that
belongs to Macrostomorpha, whereas the other often-studied free-
living flatworms and human parasitic flatworms all belong to clades
that are potentially more derived (less ancestral) in comparison with
Macrostomorpha (2) (Fig. 1C).
Many flatworms can regenerate nearly their entire body or am-

putated organs. This regenerative capacity is thought to be attrib-
utable to the presence of somatic stem cells, termed neoblasts (10,
11). In Schmidtea mediterranea (planarian flatworm), even a single
transplanted neoblast has the ability to rescue, regenerate, and
change the genotype of a fatally irradiated worm (12). M. lignano
can regenerate every tissue, with the exception of the head region
containing the brain (13, 14).
Neoblasts in M. lignano (Fig. 1 D and E), in contrast to most

vertebrate somatic stem cells, are plentiful, making up about ∼6.5%

of all cells (15), and have a very high proliferation rate (16, 17). Of
M. lignano neoblasts, 89% enter S-phase every 24 h (18). This high
mitotic activity results in a continuous stream of progenitors,
replacing tissues that are likely devoid of long-lasting, differentiated
cell types (18). This makesM. lignano an ideal model to study tissue
homeostasis because most other species have far fewer somatic
stem cells, and these are usually more difficult to harvest.
Given its promise as a model for studying mechanisms gov-

erning pluripotency, a number of groups have worked to establish
M. lignano as a model to study stem cell biology and regeneration
(16, 19, 20), sexual selection and reproductive biology (21, 22),
bioadhesion (23), and neurobiology (24). Efforts of theM. lignano
community have resulted in the development of a number of tools
that can be used to study M. lignano biology (15, 21, 25–27).
To facilitate use of M. lignano as a model organism more gen-

erally, we have produced genome and transcriptome assemblies.
We found the M. lignano genome to be replete with dispersed
tandem repeats of low-complexity sequences. To compensate for
this complex genomic architecture, we generated over 100-times
coverage of a PacBio long-read sequencing that gave rise to an
assembly that is, on average, over 100-times more contiguous than
the Illumina-only assembly.
Protein coding genes appear well assembled and ∼20,000

gene models are supported by our transcriptome libraries.
M. lignano’s genome and transcriptome lack nearly all of the
key mammalian pluripotency factors (i.e., Oct4/Pou5f, Klf4,
and c-Myc). The availability of annotated genome and tran-
scriptome assemblies enables comparison of gene-expression
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patterns by RNA-Seq under different physiological conditions
or in different cell types. We have demonstrated this by pro-
filing gene-expression patterns in worms following posthead
amputation. It is our hope that the assembled M. lignano ge-
nome and transcriptome will serve as a valuable reference for
studies of evolutionary relationships, will shed light on the
evolution and origins of Bilateria, and will comprise an im-
portant resource for regenerative biology.

Results
Genome Assembly. Sequencing efforts were focused on the DV1
line, which was generated through 35 generations of sibling crosses
(28). Using a whole-genome shotgun approach, a total of a 170×
genomic coverage of Illumina paired-end 101-bp reads were gen-
erated. Based on its K-mer (23-mer) distribution, the M. lignano
genome size was estimated to be ∼700 Mbp, which is roughly 1.5×
the estimated size of the S. mediterranea genome, the closest rel-
ative of M. lignano with genomic information available (29). The
first assembly draft, the ML1 assembly, had a very unusual four-
modal K-mer distribution (Fig. 2A), suggesting a high frequency of
genomic duplications (peaks 3 and 4). Indeed M. lignano has four
(2n = 8) sets of chromosomes in comparison with three (2n = 6)
sets of chromosomes found in the majority of other Macrostomum
species studied to date (30), suggesting a potential chromosomal
duplication. The proportion of duplicated sequences was higher,
however, than what one would expect based on the duplication of
one small chromosomal pair. This finding suggested another layer
of multiplication, potentially an ancestral whole-genome duplica-
tion or more recent large segmental duplications.
The ML1 assembly was highly fragmented, with an average

contig size of only 532 bp, an N50 of 222 bp, and a maximum contig
size of 144 Kbp (Fig. 2B). A potential explanation for such low
values may be the observed prevalence of low-complexity se-
quences in theM. lignano genome (SI Appendix, Fig. S1A), which is
higher than that seen in many other sequenced genomes. The low-

complexity sequences were present in libraries prepared from both
whole worms and sorted proliferating S-phase cells (SI Appendix,
Fig. S1B), and were enriched in the nontranscribed fraction of the
genome (SI Appendix, Fig. S1A). Roughly 25% of the Macro-
stomum genome was comprised of simple repeats, far greater
than the fraction observed in Caenorhabditis elegans, Drosophila
melanogaster, Schistosoma mansoni, or the human genome (SI
Appendix, Fig. S1C). This percentage seemed high enough to
contribute to the poor quality of our initial assembly. To
overcome this problem, we sequenced the M. lignano genome
using the SMRT sequencing from Pacific Biosciences (PacBio;
130× genomic coverage). This technology can generate reads
long enough to span many more repeat elements than can short
reads, leading to reports of greatly improved assemblies of
several species. After error correction we had 21× coverage of
reads greater than 10 Kb in length; these reads were used in the
final assembly (ML2). Use of the PacBio reads significantly
improved the genome assembly compared with Illumina only
(Fig. 2B), including improving the contig N50 size from 222 bp
to 64 Kbp and the largest assembled contig from 144 Kbp to
627 Kbp.
To assess the quality and coverage of the ML2 assembly,

M. lignano expressed sequence tags (ESTs) from public datasets
(25) and sequences derived from an arrayed bacterial artificial
chromosome (BAC) library of theM. lignano genome were aligned
to the assembly. The M. lignano ESTs were generated before es-
tablishment of the inbred DV1 line used for the genome assem-
blies. Nevertheless, 92% of ESTs could be aligned to the genome
with an average identity of 94.6%. Of reads derived from 1,248
BACs, 91% pooled and sequenced using Illumina mapped to the
ML2 assembly, with identity over 99.5%. Additionally, a sample of
10% of contings from the ML1 (Illumina only) assembly aligned to
the ML2 (PacBio only) assembly, with 99.56% identity. Considered
together, these results indicated a reliable local assembly, and our
annotation results (see below) show a high-quality representation
of overall genic composition.
Even with the long PacBio reads, there remained a possibility

that the unusually high rate of low-complexity sequences still had a
profound impact on our ability to assemble the M. lignano genome.
To examine this possibility, we analyzed contig ends and found that
55% of them had more than 50% of their bases masked by Tandem
Repeat Finder, suggesting a possible cause for the contigs to ter-
minate. Because we had obtained 21× coverage by reads larger than
10 Kbp, this indicated the presence of repeat tracts of at least this
length. The low-complexity repeats showed sequence biases, with
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Fig. 1. (A) Phylogenetic analysis of 23 animal species using partial sequences
of 43 genes. Figure modified from Egger et al. (80). (B) Interference contrast
image and a diagrammatic representation of an adult M. lignano. (C) Phylo-
genomic analysis of 27 flatworm species (21 free-living and 6 neodermatan)
using >100,000 aligned amino acids. Figure modified from Egger et al. (2). (D)
Electron micrograph of a M. lignano neoblast. Note the small rim of cytoplasm
(yellow) and the lack of cytoplasmic differentiation. Er, endoplasmic reticulum;mi,
mitochondria; mu, muscle; ncl, nucleolus; nu, nucleus (red). (E) Immunofluores-
cence labeling of dividing neoblasts with EdU (red) in an adult worm. All cell
nuclei are stained with DAPI (blue). DE, developing eggs; O – ovaries; T, testes.
Asterisks denote eyes.
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Fig. 2. (A) Representation of 23-mer frequency and coverage in the Illumina
sequencing data generated from DNA extracted from a population of adult
worms. Peak modeling was performed by fitting a mixture model of four
Poisson distributions and calculating their composite distribution in R. (B) Contig
length distribution (log2 scale) over the M. lignano genome in the ML1 (green)
and ML2 (red) assemblies. Note that the ML1 assembly covers only about 55%
of the genome.
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the most common repeats being GA-rich (SI Appendix, Fig. S2).
Additionally, the low-complexity repeats had an unusual length
distribution and frequency of occurrence (SI Appendix, Fig. S3A).
The most commonly repeated sequences were 20–24 mers, but
repeats were found as long as 100 bp. This high prevalence of long
repeats was unique toM. lignano and was not observed in the other
analyzed species (SI Appendix, Fig. S3A). The 20–24 mers often
occurred as tandem repeats and were evenly dispersed throughout
the genome (Fig. 3 and SI Appendix, Fig. S3B). Detailed analysis of
the tandem repeats revealed that they could be composed of units
even longer than 100 bp. For example, a 150 bp long tandem repeat
was identified that comprises 1.6% of the entireM. lignano genome
(SI Appendix, Table S1).
Tandem repeats are usually present as constitutive hetero-

chromatic loci (31–33). This can be associated with the presence of
CpG methylation, which can act as a repressive epigenetic mark in
some contexts (34). Cytosine methylation makes the base sus-
ceptible to deamination, resulting in C-to-T transitions (35, 36).
Thus, CpG frequency can be used as an indication of the extent of
methylation. Quantifying dinucleotide occurrences in M. lignano
revealed that CpG, which was present at only 71% of the antici-
pated frequency (SI Appendix, Fig. S4), indicating that CpG
methylation might be present at low rates. In accord with this
hypothesis, we detected putative homologs of MBD-1, -2, and -3
(Methyl-CpG binding domain proteins) in both the genome and
transcriptome and of DNMT1 and DNMT3A (de novo methyl-
transferases) in the genome of M. lignano (Dataset S1). To test for
the presence of modified cytosines directly, we sequenced the
M. lignano genome after bisulfite conversion. This process revealed
that low levels (∼2.5% of CpGs, based upon a genome-wide av-
erage) of modification are present, although we cannot strictly
distinguish based upon our analysis between cytosine methylation
and other modifications, such as hydroxymethylation. Notably,
DNA methylation was not detected in S. mediterranea (37) and
there are conflicting reports for S. mansoni (38, 39).

Genome Annotation. To identify and evaluate protein-coding genes
within the assembly, we used a combination of CEGMA and the
MAKER annotation system. Of the 248 conserved eukaryotic
genes, 232 (93.55%) were complete and 246 (99.19%) were partial
hits in the M. lignano genome. This finding indicated that the
M. lignano gene space was well assembled, but that the assembly was
fragmented in noncoding regions because of the high frequency of
low-complexity and tandem repeats. As predicted using MAKER,
the assembled genome of M. lignano included ∼61,000 gene
models, constituting an estimated 10% of the genome (SI Ap-
pendix, Fig. S5). This was likely an overestimate of the true gene
number because of overprediction, unrecognized transposable el-
ements, pseudogenes, and gene fragmentation at contig or scaffold
boundaries. Only 19,794 gene models had over 50% of their exons
supported by RNA-Seq data (SI Appendix, Fig. S5).
RepeatMasker masked only 7.7% of the ML2 assembly and in-

dicated that known retroelements and DNA transposons constitute
only 0.06% and 0.11% of the genome, respectively. RepeatScout
was used to more broadly detect repetitive substrings in the
M. lignano genome (40) and detected 23,064 types of elements
with an average length of 946 bp, the longest being 20 Kbp long.
These elements make up ∼51% of the genome (Fig. 3). Of the
23,000 elements detected, 1,693 were annotated (SI Appendix, Fig.
S6). The low fraction of annotated transposons suggests that there
may be novel classes of transposons in M. lignano.

Transcriptome Assembly and Annotation. To facilitate gene annotation,
we generated RNA sequencing libraries from whole worms and as-
sembled them using the Trinity assembler; this generated 149,647
putative transcripts totaling 77 million base pairs. The average as-
sembled transcript length was 516 bp and the N50 of the tran-
scriptome was 649 bp (SI Appendix, Fig. S7A). Transcripts were
annotated using the Trinotate pipeline; 64,842 transcripts were an-
notated representing 43.3% of the assembled transcripts. Of the
transcripts present in the transcriptome, 99.47% align to the genome

at an average identity of 98.31%. The average transcript had an
alignment covering 98.6% of its length. Gene Ontology analysis on
the annotated transcriptome defined the most predominant classes of
transcripts (SI Appendix, Fig. S7B). The annotation of transposons in
the transcriptome assembly (5% of transcripts) suggests the presence
of actively transposing families (particularly Mos1) (Dataset S2).
Some flatworm species have been shown to carry out trans-

spliced leader addition (41, 42). We have found evidence of
trans-splicing in the M. lignano transciptome assembly in the
form of 7,500 transcripts with potential spliced leader (SL) se-
quence at their 5′ ends (SI Appendix, Table S2). Those tran-
scripts encoded proteins from a range of protein families and
had introns, suggesting that they undergo both trans- and cis-
splicing. The longest version of the putative leader sequence was
45 nt long, but shorter versions were also observed. All versions
were identical at the 3′ end and differed only by length of the 5′
end, and contained a potential initiator AUG, similarly to what
was observed in other flatworms (41, 42) (SI Appendix, Fig.
S8A). We identified a longer transcript that potentially gives rise
to the leader sequence. Is shares sequence similarity with other
planarian SL RNAs—especially the splice site conservation—but
it is ∼two-times longer than planarian SL RNAs (SI Appendix, Fig.
S8 and Table S2).
M. lignano shared 6,217 transcripts with S. mediterranea (SI

Appendix, Fig. S9A). Furthermore, based on the transcriptome
analysis M. lignano had a similar number of gene losses com-
pared with humans as did S. mediterranea. C. elegans showed
the highest number of gene losses relative to humans, and
D. melanogaster the lowest (SI Appendix, Fig. S9B and Dataset S3).
Interestingly, the M. lignano genome encodes ∼2,000 genes that are
present in humans but absent in both C. elegans and D. melanogaster
(SI Appendix, Fig. S10A and Dataset S4). Those genes belong to a
variety of pathways (i.e., Jak-Stat, Pi3k-Akt, Egf, Igf, Vegf, Fgf, Pdgf,

Fig. 3. Overview of the 50 largest contigs in theM. lignano genome, making up
about 2.6% of the total assembly. Different tracks denote (moving inwards):
contig size × 10 Kbp; miRNA count (1–54 mapped miRNAs); large repetitive ele-
ments (RepeatScout) (1–4,476 identified repeats); transcript count (1–43 mapped
transcripts); Tandem repeat unit size in base pairs (1–500); Tandem repeat count
(1–28); GC content (0–1); and Illumina coverage (4–160×). The color gradients
correspond to the range of values for each track (lower values are lighter, higher
values are darker).
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Tgfβ/Bmp, Mapk, p53, Hedgehog, Notch) (SI Appendix, Fig. S10B
and Dataset S4).

Putative Pluripotency Genes and Pathways.A number of transcription
factors have been shown to play pivotal roles in stem cell mainte-
nance and determination of pluripotency in mammals (43). The
most well-characterized set of mammalian pluripotency factors
includes Oct4/Pou5f1 (44), Nanog (45), Klf4 (46), c-Myc (47), and
Sox2 (48). These have been successfully used for the dedifferen-
tiation of adult somatic cells into induced pluripotent stem cells
(49–51). Of the five key mammalian pluripotency factors, only
Sox2 was identified with high confidence in theM. lignano genome
(SI Appendix, Fig. S11 and Dataset S5). Interestingly, Myc ortho-
logs seem to be lost entirely in Platyhelminthes, making it the only
animal group besides Nematodes (52) that does not encode
this conserved protein (SI Appendix, Fig. S12). Hydra magni-
papillata, another metoazoan species with striking regenerative
capacity, contains only homologs of Myc and Sox2 in its genome
and is missing the remainder of the mammalian pluripotency
factors (53). In S. mediterranea, only Sox2 and other Sox family
transcription factors were present and these are expressed spe-
cifically in the neoblasts (54). Interestingly, even though Oct4/
Pou5f1, Nanog, Klf4, and c-Myc could not be identified in the
M. lignano genome/transcriptome, the main mammalian stem cell
pluripotency maintenance pathways (i.e., Jak-Stat, Wnt, TGFβ,
MAPK, and PI3K-AKt) seem to be conserved (SI Appendix, Fig.
S11 and Dataset S5) (55).

Homeobox Genes. The homeobox superclass of genes, in particular
the Hox family, is responsible for patterning of the anterior–
posterior axis in bilateral animals and is critical for organ re-
generation in planarians (56, 57). We found that M. lignano has 49
homeobox-containing genes, represented across 11 classes of ho-
meoboxes (SI Appendix, Figs. S13 and S14). We found interesting
retention of homeobox families not seen in other Platyhelminthes
sequenced so far (58) (SI Appendix, Figs. S13 and S14). The most
prominent examples of those retained homeobox-gene families that
could play a role in regeneration were Cdx (59), Dbx (60), and Prrx
(61). We also observed that some families have undergone in-
dependent lineage duplications, leaving multiple copies of Hox1,
NK2.2, NK2.1, Cdx, Irx, Meis, and Pknox (SI Appendix, Figs. S13
and S14). The genes of the homeobox superclass are often or-
ganized in clusters wherein the order in the cluster reflects po-
sitional or temporal expression patterns in the animal (62, 63).
The clustering of homeobox genes in a genome is often of
functional significance because it reflects coregulation as well as
remnants of ancestral states (64). For the homeobox complement
of M. lignano, we observed various instances of clustering, most
likely because of independent lineage duplications, except for the
case of Mnx-Barh (SI Appendix, Table S3). The most prominent
examples were the TALE-class, in which a cluster of four Iroquois
genes are found within the same scaffold and a scaffold containing
three Meis paralogs.

A Transcriptional Profile of M. lignano Regeneration. To examine gene
signatures associated with regeneration, we cut worms between the
pharynx and the testes and let the head fragment regenerate for 3,
6, 12, 24, 48, and 72 h (SI Appendix, Fig. S15), and we searched for
gene-expression changes across the time course (Fig. 4). We first
focused on early response genes (i.e., those that are up-regulated
within 3–12 h after amputation) (Fig. 4, SI Appendix, Fig. S15, and
Dataset S6). Among those genes there were a number of growth
factors (EGF-like growth factors and Von Willebrand growth
factors). Those types of growth factors are known to participate in
cell growth/division in response to stimuli (65). Interestingly, ho-
mologs of genes from the Tgf-β/Bmp pathway, one of the regula-
tors of mammalian pluripotency, were also present among the early
response genes. Additionally there were multiple up-regulated
transcripts involved in cell signaling (kinase, ATPase, and GTPase
domains). Finally, there were a number of up-regulated factors in-
volved in cellular organization: cell adhesion, response to wounding,

and cytoskeletal organization. This group is likely essential for
wound closure and blastema formation (66) (SI Appendix, Fig. S15
and Dataset S6). We next analyzed transcripts that change ex-
pression levels at 24 or 48 h postamputation, because this time
point exhibits the largest expansion of S-phase cells (putative di-
viding neoblasts) (19, 66). At this time point, there was an en-
richment of transcription factors with zinc-finger domains, Klf
transcription factors, and a TNF-like protein, a systemic signaling
cytokine. Among the factors that are down-regulated 48-h post-
amputation, we identified a potential pluripotency determinant,
a Smad4-like transcript, supporting the previous observations that
the blastema at this stage enters a differentiation phase (66) (SI
Appendix, Fig. S16 and Dataset S6). In summary we identified six
different synexpression classes (SI Appendix, Fig. S16 and Dataset
S6) of genes specifically up- or down-regulated at different time
points postamputation. Even though the majority of transcripts
measured were not yet annotated, these datasets can provide a
valuable resource for future regeneration studies.

Discussion
To serve as a resource for future studies of flatworm biology, we
have sequenced, assembled, and annotated the genome and tran-
scriptome of the free-living flatworm M. lignano. The genome of
this animal is highly enriched in dispersed, low-complexity repeats,
making de novo assembly exceptionally difficult. It is currently un-
clear why the M. lignano genome is so rich in low-complexity tan-
dem repeats. There is evidence pointing to minisatellites as units
that cause mutability and promote evolution because of their
recombinogenic properties (67). If minisatellites are present in the
M. lignano genome in the tens of thousands, as the data suggests,
they could contribute to meiotic mutability and potentially cause
genomic instability. The impact of this repeat burden is thus a clear
area for further investigation and would benefit from comparisons
with other closely related species.
TheM. lignano genome showed an indication of low levels of DNA

methylation (∼2.5% CpG). Many commonly used nonmammalian
model organisms (including yeast, C. elegans, and D. melanogaster)
completely lack or have very low levels of genomic DNAmethylation
(68). As the M. lignano genome is indeed methylated, albeit to a low
extent, this organism will provide an important invertebrate model for
studying the evolution of methylation in metazoans.
Our initial analysis of the M. lignano genome and transcriptome

has begun to reveal a range of interesting properties. The homeobox
complement ofM. lignano has retained distinct homeobox families in
contrast to other Platyhelminthes analyzed (58). The M. lignano
transcriptome shows evidence of trans-splicing. The evolutionary

Fig. 4. Heat map of differentially expressed genes at different regenera-
tion timepoints. Each replicate is plotted separately. Down-regulated and
up-regulated transcripts are labeled in green and red, respectively. Scale
covers log2 values. The samples are grouped with complete-linkage clus-
tering using Euclidean distance.
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history and significance of trans-splicing remain open questions.
M. lignano and other flatworms lack Myc orthologs. This is an in-
teresting observation because Myc is very conserved in Bilaterians
and even beyond (cnidarians, poriferans), although it is also absent
from Nematodes (52, 69). Because the Myc transcriptional network
predates the origin of animals (69), Nematodes and Platyhelminthes
must have independently lost theMyc genes, although other parts of
the Myc transcriptional network (as suggested by the retention of
Max) may be intact and remain to be investigated across Platy-
helminthes. M. lignano also provides an interesting model for the
study of germ cell biology, because neoblasts are able to differentiate
into germ cells. As an example, we are already beginning to probe
the roles of the piRNA pathway in transposon silencing and neoblast
maintenance in M. lignano (70).
M. lignano has a number of properties that make it advantageous

as a model for studying stem and germ cell biology, differentiation,
regeneration, and perhaps also aspects of neuroscience. Moreover,
viewed in comparison with those of other Platyhelminthes, the
resource we provide might shed further light on the evolution of
the molecular toolkit of regeneration and also on the evolution and
conservation of genes and pathways in protostomes.

Materials and Methods
Detailed materials and methods are available in SI Appendix.

Animal Culture and Regeneration. M. lignano was kept in Petri dishes with
nutrient-enriched f/2 medium (71) and fed ad libitum with diatom algae (Nitz-
schia curvilineata). For regeneration, worms were cut at the postpharyngeal
level to completely remove the gonads.

Sequencing Library Preparation, DNA and RNA Isolation. DNA-Seq libraries
were prepared using the Ovation Ultralow Library Systems (Nugen). For
PacBio sequencing the libraries were prepared using the PacBio library
preparation kit, RS II, according to the manufacturer’s instructions. The li-
braries were sequenced using either the p4c2 or p5c3 chemistry and stan-
dard run parameters. For transcriptome assembly, three Script Seg V2
(Epibio) libraries were constructed according to manufacturer’s specifica-
tions. RNA-Seq libraries for the regeneration studies were generated using
the Encore Complete RNA-Seq DR Multiplex System according to manufac-
turer’s instructions. All Illumina samples were sequenced using Illumina GAII
or HisEq. 2000 (PE100) platforms.

Transcriptome Assembly and Annotation. The transcriptome assembly was
done using the Trinity package (Broad Institute). The transcriptome anno-
tation was performed using Trinotate, the Trinity annotation pipeline (72).

Genome Assembly and Annotation. The Illumina Assembly (ML1) was built
using SGA using 115× coverage of 101-bp paired-end Illumina HiSeq data.
Pacbio data were self-corrected using HGAP. After correction, reads were
assembled using the Celera Assembler v8.2beta generating the ML2 as-
sembly. A sample of 81,665 contigs from the Illumina assembly (∼10%) were

aligned to all of the contigs in the PacBio assembly using Mummer v3.23.
Genome annotation was performed using Maker v2.31.8 (December 2014).

Transposon Analysis. RepeatScout v1.0.5 was run on both the Illumina and
PacBio assemblies (40). Only repeats that occur at least 10 times in the ge-
nome were kept for further analysis. Repeats were annotated using a custom
nonredundant library from National Center for Biotechnology Information
(NCBI) entries (keywords: retrotransposon, transposase, “reverse transcriptase,”
gypsy, copia) obtained from O. Simakov et al. (73).

K-mer Analysis and Peak Modeling. K-mers were counted in the Illumina data
using Jellyfish 1.1.10with the -C parameter. Peakmodelingwas performed by
fitting a mixture model composed of four Poisson distributions and calcu-
lating their composite in R.

Differential Expression. Reads were aligned to the transcriptome using RSEM
(74). Differentially expressed genes (false-discovery rate ≤ 0.001, with a
minimum fourfold change) were identified using DESEq. (75).

Analysis of the Transcript Conservation. Control script (reciprocalblast_allsteps.py)
for running reciprocal BLASTp search was obtained from Warren et al. (76).

Sequence Complexity Analysis. Sequence complexity was calculated on a per
read basis using a previously described algorithm (77).

Tandem Repeat Finder Masking for Low Complexity. Tandem Repeat Finder
(78) was run on each sample with the following parameters: 2 7 7 80 10 50
500 -f -d -m -ngs -h.

Estimating CpG Content. CpG histograms were built using a previously de-
scribed method (73).

Bisulfite Genomic DNA Sequencing and Analysis. The DNA was bisulfite con-
verted using Zymo EZ methylation gold kit following manufacturer’s in-
structions. Reads were aligned to the ML2 assembly and analyzed as
previously described (79).

Data Access. The genome and transcriptome sequencing data are available in
the NCBI Sequence Read Archive under accession no. SRP059553.
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