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Abstract
Background: Microarray technology has unveiled transcriptomic differences among tumors of
various phenotypes, and, especially, brought great progress in molecular understanding of
phenotypic diversity of breast tumors. However, compared with the massive knowledge about the
transcriptome, we have surprisingly little knowledge about regulatory mechanisms underling
transcriptomic diversity.

Results: To gain insights into the transcriptional programs that drive tumor progression, we
integrated regulatory sequence data and expression profiles of breast cancer into a Bayesian
Network, and searched for cis-regulatory motifs statistically associated with given histological
grades and prognosis. Our analysis found that motifs bound by ELK1, E2F, NRF1 and NFY are
potential regulatory motifs that positively correlate with malignant progression of breast cancer.

Conclusion: The results suggest that these 4 motifs are principal regulatory motifs driving
malignant progression of breast cancer. Our method offers a more concise description about
transcriptome diversity among breast tumors with different clinical phenotypes.

Background
Deregulation of transcriptional programs leads to devel-
opment and progression of cancer, and many transcrip-
tion factors (TFs) have been identified as oncogenes or
tumor suppressor genes [1]. In the last decade, microarray
technology has revolutionized cancer biology: microar-
ray-based expression profiling studies have revealed that
transcriptomes of cancer cells drastically change during
carcinogenesis, and vary among different types of tumors.

Among many types of cancers, breast cancer has been
attracting numerous investigators armed with microarray
technology. Human breast tumors are diverse in their his-
tology, prognosis, and responsiveness to treatments.
Microarray technology has unveiled transcriptomic differ-
ences among tumors of various phenotypes, and brought
great progress in molecular understanding of the pheno-
typic diversity. For example, Perou et al. [2] and Sorlie et
al. [3] established that breast tumors are classified into
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five different phenotypic subtypes. van't Veer et al. [4] and
van de Vijver et al. [5] accurately divided breast cancer
patients into two groups with favorable or unfavorable
outcome, suggesting the potential of microarrays as a
diagnostic test to select patients who would need adjuvant
therapies. Many other studies have also identified gene
signatures that enable us to predict distant metastasis or
survival [6-8]. However, compared with the massive
knowledge about the transcriptome, we have surprisingly
little knowledge about regulatory mechanisms underling
transcriptomic diversity.

To analyze the transcriptional regulatory programs, com-
putational approaches that integrate regulatory sequence
data with global expression profiles are essential. So far,
many approaches have been developed and successfully
applied to lower organisms like yeast. For finding motifs
that regulate gene expressions in yeast, linear regression-
based methods use the correlation between the presence
of cis-regulatory motifs and expression values [9,10]. A
method employing multivariate adaptive regression
spline (MARS) algorithm captured synergistic interactions
between regulatory motifs and improved the prediction
significantly as compared to that by the linear regression
[11]. A method based on Bayesian networks also success-
fully identified combinational gene regulation by multi-
ple motifs in yeast promoter sequences [12]. On the other
hand, such challenges for gene regulation in higher
eukaryotes like human are much harder owing to intrinsic
complexity of their regulatory systems, and have just
started [13,14]. As for breast cancer, although a small
number of studies have also tried to decode transcrip-
tional programs in cancer cell [15,16], it also remains to
be tested whether transcriptional programs exist that are
associated with, and potentially drive, breast tumor malig-
nancy.

In this study, we propose a new approach to decipher
transcriptional programs from cancer microarray data.
Our method searches for the most probable motif combi-
nation associated with clinical phenotypes such as histo-
logical grade or survival time. Our approach has two
major novel features. First, extending a previous work
[12], we introduce a Bayesian scoring function which can
treat continuous expression values. Secondly, instead of
using raw expression values, we define a "meta-expression
value" based on a correlation between gene expression
profiles of a gene and a clinical phenotype, and then
search for motifs correlated with meta-expression values.
We show that application of our method to breast cancer
microarray data successfully identified cis-regulatory
motifs which are associated with malignancy of breast
cancer.

Methods
Methods Overview
To elucidate transcriptional programs in cancer cells, we
used a bioinformatics method based on Bayesian net-
works. We integrated regulatory sequences and global
expression profiling data, and searched for cis-regulatory
motifs statistically associated with clinical annotation
accompanying the expression profiling data (Fig. 1).

We prepared three types of data to be integrated: regula-
tory sequences, regulatory motifs and expression profiling
data. For regulatory sequences, we used core promoter
sequences spanning 500 bp upstream and 100 bp down
stream of the transcriptional start sites (TSSs). The regula-
tory motif data were prepared as position weight matrices
(PWMs) by the following method: the known TF binding
motifs were obtained from the TRANSFAC [17] and JAS-
PAR database [18]. In addition, to complement missing
information of the databases, we obtained potentially
novel PWMs using an ab initio motif finder program, Dis-
criminating Matrix Enumerator (DME, Smith et al., 2005).
Among similar types of motif finder programs, an excep-
tional feature of DME is that it identifies motifs based on
relative over-representation between two sets of
sequences. To obtain the de novo identified motif set, DME
was applied to the regulatory sequences of gene groups
which display highest and lowest expression values in
expression value data. After reducing redundancy of these
two PWM sets by clustering, the regulatory sequence of
every gene was scored by each PWM. Then, the obtained
scores are binarized using multiple thresholds to produce
sequence features. Here, each sequence feature indicates
the presence of a motif assuming one version of the mul-
tiple PWM thresholds. Prepared sequence features are col-
lected to produce a sequence feature table. The sequence
feature table is a binary matrix with its rows for genes and
its columns for sequence features.

For expression value data, we prepared a publicly availa-
ble data set of breast cancer expression profiles [7]. The
data set includes expression values of 16,425 genes in 252
samples and information about a phenotype of each sam-
ple including its histological grades and patient prognosis.
In our analyses, in stead of using the raw expression val-
ues, we used a "meta-expression value" calculated as a
kind of correlation of the raw expression values with the
phenotypes (e.g. differential expression between two sam-
ple groups of different histological grades or correlation
with prognosis). Hence, the expression value matrix is
transformed to a vector whose element is a meta-expres-
sion value of a gene. The expression value data were
divided into training data and test data with a ratio of 3:1.
Only information from the training data was used in a
series of searches including de novo motif search using
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DME, and the test data were used for statistical evaluation
of the result.

To infer associations between sequence features and the
meta-expression values, our method learns parents of a
single child node with methods originating from Bayesian
network leaning. We assumed a two-layer network struc-
ture where sequence features regulate the meta-expression
values. In this case, the structural learning indicates that
the method identifies the subset of sequence features that
regulates the meta-expression values of each gene. This
probabilistic approach is motivated by the work of Beer
and Tavazoie [12], which successfully predicted gene
expression patterns from combinations of regulatory

motifs in yeast. This approach can analyze nonlinear syn-
ergistic effects between regulatory motifs, which are
thought to be more critical for gene regulation in higher
eukaryotes. It can also incorporate flexible conditions of
sequence features, such as the threshold value for PWM
search. In the work of Beer and Tavazoie [12], the expres-
sion values were binarized to indicate whether each gene
is assigned to an expression cluster. However, it is known
that such discretization of data leads to loss of informa-
tion [19]. Moreover, results yielded are potentially
dependent on the threshold chosen in the discretization
[20]. To solve this problem, our analysis introduces a new
scoring function, which can deal with continuous meta-
expression values. When a binary sequence feature table

Schema of our methodFigure 1
Schema of our method. We first calculate correlations between phenotypes and expression values as meta-expression val-
ues, while preparing a sequence feature table by searching promoter sequences for cis-regulatory motifs. Cis-regulatory motif 
data are prepared from two different sources: already known motifs, which are downloaded from databases, and de novo iden-
tified motifs, which were discovered by an ab initio motif finder program, DME. Then, associations between sequence features 
and meta-expression values were inferred by structure learning of Bayesian networks.
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and continuous meta-expression value data are given as
the input data, the scoring function represents the poste-
rior probability of a model that represents the dependency
of the expression values and a combination of sequence
features. By a greedy strategy, we searched for the most
probable combination of sequence features so as to max-
imize the scoring function. Starting from the empty
model, we iteratively added a sequence feature to the
model as long as the value of the scoring function
increases.

Regulatory sequence analysis
For regulatory sequence data, we prepared promoter data
of 31,718 human genes from the Ensembl database
(Release 40). Additionally, we also retrieved 27,967
mouse promoter sequences for comparative analysis (see
below). Assuming the TSS as the start base of the gene
assigned in Ensembl, a repeat-masked promoter sequence
covering the 500 bp upstream and the 100 bp down-
stream of the TSS for each gene was extracted from the
genome sequences.

For regulatory motif data, we prepared PWMs. The value
fib of a PWM represents frequency of nucleotide base b at
the i-th position in a motif. The frequencies of bases in
each position are normalized so that ∑b ∈ {a, t, g, c} fib = 1. If
fib = 0, we assigned fib = 0.001 to avoid errors in log calcu-
lations. We acquired a total of 495 PWMs, which consist
of vertebrate 367 PWMs annotated as "good" in TRANS-
FAC 10.1 [17], 123 PWMs from JASPAR core [18], and 5
PWMs from existing literature [21,22]. We then removed
extremely simple or complex PWMs based on their infor-
mation contents, and made a set of total 449 PWMs.
Using the partition around medoids algorithm with the
dissimilarity criterion based on the Kullback-Leibler
divergence, the 449 PWMs are divided into 250 clusters
(see Additional file 1). In the following analyses, we used
250 medoids of the clusters as the already known PWMs

In addition to the already known PWM set, we prepared
motifs appearing frequently in promoter sequences of
genes with high or low values in the expression value data.
For the top 500 and the bottom 500 genes for expression
values in the training data, we obtained their promoter
sequences (the 500 bp upstream and the 100 bp down-
stream of the TSS) and those of their mouse homologs.
We then searched for motifs relatively overrepresented in
either set of sequences using the ab initio motif finder pro-
gram, DME. For each identified PWM, its quality was eval-
uated based on classification error rate calculated by the
MOTIFCLASS program in CREAD package. In accordance
with the classification error rates, PWMs were ranked and
clustered so as to reduce redundancy (see Additional file
1). We used the highest ranked PWM in each cluster and
added them to the de novo identified PWM set.

To identify TF binding motifs in promoters, we used the
log odds ratio L between a PWM and background base fre-

quency . We calculated log odds ratio Ls for every sub-

sequence of each promoter s (including the
complementary strand), whose length is equal to the
width of the motif of interest, w:

In our analyses,  is the base composition of each pro-

moter, and the maximum of Ls in a human promoter

sequence was taken as the motif score Lhuman for the
sequence. For human genes whose mouse homologs are
registered in Ensembl, Lmouse is also calculated. Then, Lhu-

man and Lmouse were averaged to produce the final score L.
We found that this incorporation of homologous regula-
tory information improves our results, while PWM search
combined with an ordinary phylogenetic footprinting
approach reduces the performance presumably owing to
the loss of sensitivity. For human genes that do not have
any homologs, we used Lhuman as L. We assumed that the
sequence has the motif if L is above the p% highest value
in the population of all sequences. For all genes, we pre-
pared binary data indicating the presence of the motif in
their promoter with p = 5, 10, 15, and 20. This procedure
was iterated for all members of the de novo identified and
already known PWM set to produce the sequence feature
table.

Expression data analysis
Expression data [7] produced by Affymetrix GeneChips
were downloaded from the Gene Expression Omnibus
(GEO) database at NCBI (The GEO accession number is
GSE3494). Absolute expression values of a data set were
converted to the log scale and normalized so that the
mean is equal to 0 and the variance is equal to 1 in each
sample. The probe set IDs were converted to Ensembl
gene IDs. In cases that one gene ID matches multiple
probe set IDs, the probe set which shows the most vari-
ance among the samples was mapped to the gene. For in
total 16,425 genes, we prepared meta-expression values
for subsequent Bayesian network analysis by calculating
differential expression between two sample groups or cor-
relation with survival time as described below. The meta-
expression values were also normalized so that the mean
is equal to 0 and the variance is equal to 1.

Since the samples are separated into two groups, we meas-
ured differential expression of each gene between the two
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groups based on t-statistic. To evaluate the significance of
differential expression, a null distribution of the t-statistic
was produced from 100 data sets with randomly permu-
tated sample labels. Based on the null distribution, the P-
value was computed by two-sided test. To correct multiple
hypotheses testing, the P-values were converted to Q-val-
ues using the qvalue package of R [23].

For Survival time information, we measured univariate
correlation of each gene with survival time using the Cox
proportional hazards regression method [24], we used the
ratio of each regression coefficient to its standard error as
the correlation value with poor prognosis.

Bayesian network analysis
For selecting the network structure N of the Bayesian net-
work, we apply a Bayesian approach. According to Bayes'
theorem, the posterior probability of the network struc-
ture, p(N|D), is proportional to the product of the prior
probability of the network structure, p(N) and the likeli-
hood p(D|N) as

Based on this formula, we can infer the network structure
N hidden behind the data D. In our analyses, we assumed
that a network structure N is composed of a single child
node and multiple parent nodes. The single child node
has a continuous variable x representing a meta-expres-
sion value, and parent nodes have binary variables indi-
cating the presence or absence of sequence features. The
data D is composed of M meta-expression values and their
sequence feature information. For a given data D, we
search parent nodes, i.e., sequence features, for each group
of meta-expressions by maximizing p(N|D).

The likelihood

Suppose that we have gene expression profiles of M genes
measured by a number of microarrays. The meta-expres-
sion vector, x, is then computed as the M-dimensional
vector whose the ith element, xi, represents the meta-

expression value of the ith gene. We also assume that S is
the sequence feature table whose the (i, j)th element, sij,

takes one if the ith gene has the jth sequence feature in its
promoter region, or zero otherwise. The network struc-
ture, N, specifies the set of sequence features as the parents
of the meta-expression values. For example, if N specifies
the two parents for the meta expression values, we then
consider a three nodes Bayesian network with observa-

tions , where j1, j2 ∈ {1,..., n}

and j1 ≠ j2. Here n is the number of columns in S, i.e., the

number of sequence features of interest. Our structural
learning of Bayesian networks is to find the optimal com-
bination of sequence features as the parents of meta-
expression values.

In the problem stated above, we would like to discuss our
model for meta-expressions when the networks structure
is given. Since the information of sequence features take
binary variables, i.e., 0 or 1, the parent variables can theo-

retically take  patterns, where np is the number of par-

ents specified by the network structure. In the above
example, the network model chooses two motifs as the
parents and there are four patterns, {(0, 0), (0, 1), (1, 0),
(1, 1)}, that the parents can take. In practice, since it is a
possible case that we cannot find all the patterns of speci-
fied parents in S for large np, we denote the number of

observed patterns by q (≤ ). Therefore, if we specified
the network structure, the meta-expression values can be
separated into q exclusive groups. That is, the parents of
the meta-expressions in each group show the same pat-
tern.

More mathematically, let si = {si1,..., si, n} be the the ith row

of S. Based on the specified structure N, we define the sub-

set  as the parents of meta-expres-

sions, where {p1,...,pr} ⊂ {1,..., n}. We then have the

following decomposition:

where pak is the kth pattern of parent motifs and dk is the
set of meta-expressions that have the same sequence fea-
ture information restricted by the parent motifs. For
example, if s1(N) and s2(N) are equal to pa1, then x1 and
x2 are included in d1. Note that we assume p(si|N) = p(si)
follows uniform distribution and is independent from the
selection of network structure N.
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We next consider a statistical model for p(dk|pak). By omit-

ting the subscript k and the parent state, we denote
p(dk|pak) as p(d). Suppose that Mk meta-expression values

are included in the group, i.e., . Note

that we also denote Mk as M hereafter. We fit a normal dis-

tribution to each element of d by

where ϕ(x|μ, τ) is the density of normal distribution with
mean μ and variance τ-1. Note that τ is called precision.
We assume that the joint prior density of mean and preci-
sion, μ and τ, is decomposed by

p(μ, τ) = p(μ|τ)p(τ).

The conditional density of μ is set as

where μ0 and λ0 are hyperparameters. The marginal distri-
bution of the precision, τ, is set by the density of gamma
distribution with hyperparemeters, α0 and β0, and given
by

In this setting, p(μ, τ) is the density of normal-gamma dis-
tribution with hyperparameters, μ0, λ0, α0 and β0. Hence,
the marginal likelihood p(d) is given by

Since the normal-gamma distribution is a conjugate prior
of normal distribution model, the integral in the marginal
likelihood can analytically be calculated. Hence, by
putting

we then have

The details of this calculation are shown in Additional file
1. Hence, the marginal likelihood, p(D|N), is obtained as
the function of the hyperparameters {μ0j, λ0j, α0j, β0j} and
is given by

In our analysis, we set μ0k = 0, λ0k = 10, α0k = 9/2 and β0k =
10/2 for all k.

The prior probability
To avoid overfitting to the training data, the prior proba-
bility of the network p(N) was specified so as to penalize
complex networks:

where c is a constant that makes ∑p(N) = 1, K is a param-
eter that specifies how strongly complexity is penalized,
and np is the number of parent nodes in the network. As K
decreases, the networks grow larger, and the number of
parent nodes increases. Initially this increase in complex-
ity reflects actual combinational regulation. However,
after exceeding a point, false positive increase gradually
owing to overfitting to the training data. To optimize the
value of K, we performed preliminary runs with K = 10,
15, 20, 25, 30. We checked P-values for the training data,
and chose K = 20 because it allows sufficient sensitivity
and a minimum of false positives.

Search algorithm
To search for the most probable parent nodes based on
the scoring function p(N)p(D|N), we took greedy search
strategy. We started from structure without any edge
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between the child node and the parent node candidates
and iteratively added an edge from a parent node candi-
date. For each iterative cycle, we calculated the score of
p(N)p(D|N) for every case where the edge from the each
parent node candidate was added, and the maximizer of
them was added to the structure. The cycle repeated until
no more edge increases the score. To speed up the search,
we utilized clustering of parent node candidates (see
Additional file 1).

Results
Transcriptional programs correlating with histological 
grades
Focusing on transcriptional regulatory programs that con-
trol histological diversity, we searched for cis-regulatory
motifs associated with histological grades. Histological
grading in breast cancer seeks to integrate measurements
of cellular differentiation and replicative potential into a
composite score that quantifies the aggressive behavior of
a tumor. The most studied and widely used method is the
Elston-Ellis modified Scarff, Bloom, Richardson grading
system, also known as the Nottingham Grading System
[25]. The Nottingham Grading System is based on a
microscopic evaluation of morphologic and cytologic fea-
tures of tumor cells, including degree of tubule formation,
nuclear pleomorphism, and mitotic count. The sum of
these scores stratifies breast tumors into grade 1 (G1; well-
differentiated), grade 2 (G2; moderately differentiated),
and grade 3 (G3; poorly diferentiated, highly prolifera-
tive) malignancies. It has been well known that the grade
of breast cancer is a powerful indicator of disease recur-
rence and patient death. Untreated patients with G1 dis-
ease have a ~95% 5-year survival rate whereas those with
G2 and G3 malignancy have survival rates at 5 years of
~75% and ~50%, respectively. Comparison between glo-
bal expression profiles of tumor cells of different grades
also revealed distinct expression patterns, especially
between G1 and G3 groups [26].

For each gene in the global expression profile data, we cal-
culated the degree of differential expression between two
sample groups (67 G1 and 54 G3 samples). We then
applied our method to the differential expression value to
search for correlating motifs. The results were evaluated in
two ways. First, reproducibility of the result was assessed
by bootstrap analysis. Structure learning of a Bayesian net-
work was repeated 30 times using bootstrap samples from
the training dataset. We found that V$ELK1_02,
V$E2F1_Q4_01, V$NRF1_Q6 and JSP$NF_Y were repro-
ducibly selected by the bootstrap analysis (Figure 2).
Here, IDs starting from "V$", "JSP$" and "DME$" motifs
denote motifs from the TRANSFAC database, the JASPAR
database and our DME analysis, respectively. For
V$ELK1_02, highly similar motifs sampled by DME also
reproducibly appeared. Although we present here results

based on one training-test set partition, for checking
robustness of biological findings, we applied our method
to different training-test set partitions. We confirmed that
almost the same results were obtained with different train-
ing-test set partitions. Secondly, statistical significance
was evaluated for each of the sequence features reproduc-
ibly selected by the bootstrap analysis. We assessed differ-
ence of expression values between two gene groups with
and without each sequence feature, using Wilcoxon rank
sum test for the training and test data. It should be noted
that, because the P-values calculated using the training
data is not subject to multiple testing corrections, it can
potentially achieve low values by overfitting to the train-
ing data. Hence, we must use the P-values calculated using
the test data to accurately evaluate statistical significance.
The results from the Wilcoxon rank sum tests suggest that
sequence features that are most significantly associated
with the histological grades are V$ELK1_02(20)
V$E2F1_Q4_01(10), V$NRF1_Q6(10) and
JSP$NF_Y(10) (The IDs are followed by values of the
threshold parameter for motif searches in parentheses). P-
values were also calculated for these four sequence fea-
tures as a combination. We split genes into 16 groups
based on combinations of the presence and absence of the
4 sequence feature, and evaluated difference of expression
value distributions among the gene groups using Kruskal-
Wallis test. Our calculation shows that the combination of
these four sequence features scores highly significant a P-
value of 1.33 × 10-15 for the test data. Analyses using inde-
pendent data sets and prediction based on the MAP-value
also confirmed these results (see Additional file 1).

We next investigated how differential expression between
G1 and G3 tumors depends on these four sequence fea-
tures. We divided genes into 16 groups based on patterns
of these four sequence features, and differences in distri-
bution of their expression values were examined (see Sup-
plementary Table 1 in Additional file 1). The box plots in
Figure 3 summarize the results. For clarity, gene groups of
similar distributions were gathered to form one group.
These results indicate that these sequence features are
additively associated with upregulation of gene expres-
sion in G3 populations.

Transcriptional programs correlating with prognosis
We also examined regulatory programs associated with
prognosis, a more direct measure of tumor malignancy.
For each gene, correlation values with survival time were
calculated using Cox regression models [24]. Then, we
searched for cis-regulatory motifs associated with the cor-
relation values using our method. Our analysis selected
V$ELK1_02(10), V$E2F1_Q4_01(5), V$NRF1_Q6(15)
and JSP$NF_Y(10) as sequence features positively associ-
ated with prognosis, similarly to the analysis for histolog-
ical grade (Figure 4, Supplementary Table 2 in Additional
Page 7 of 14
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file 1, and Figure 5). A P-value for a combination of these
four motifs was calculated as 7.17 × 10-12 for the test data.

Robustness of our biological findings
To confirm robustness of our biological findings, we ana-
lyze independent data published by Sotiriou et al.

[27](189 samples × 12466 genes) and Pawitan et al.
[28](159 samples × 16425 genes). Similar to the results
obtained in the above analyses, we found that the binding
motifs of E2F, ELK1, NRF1 and NFY show significant cor-
relation of histological grades and prognosis (Table 1),
indicating the robustness of our findings. Taken together,

Sequence features associated with differential expression between G1 and G3 breast tumorsFigure 2
Sequence features associated with differential expression between G1 and G3 breast tumors.
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b The number of appearances of sequence feature in 30 searches with bootstrap resampling.   
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f g h i For these four sequence features, P values  were calculated as 1.37x10     and 1.33x10      
by Kruskal-Wallis test for the training data and the test data, respectively. 
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we conclude that cis-regulatory motifs bound by these 4
TFs are principal motifs associated with breast cancer
malignancy.

Discussion
To decode transcriptional program in breast cancer, we
developed a novel approach employing a new Bayesian
scoring function and meta-expression value. Combining
promoter sequence and expression data, we searched for
cis-regulatory motifs correlated with histological grade
and prognosis.

As motif sets to be searched, we prepared known motifs
from databases, and de novo motifs identified by a motif
discovery program, DME. As motifs correlated with malig-
nancy, we identified the ELK1 binding motif as well as a
highly similar de novo one, demonstrating success in our
approach. Judging from statistical evaluations, the known
motif shows better performance than the de novo one. Fur-
ther improvement of the motif finder program will enable
us to identify de novo motifs of higher quality. Our
method introduced a new Bayesian approach, which can
deal with multiple sequence features and a continuous

Dependency of differential expression between G1 and G3 breast tumors on sequence featuresFigure 3
Dependency of differential expression between G1 and G3 breast tumors on sequence features. Genes are 
divided into five groups based on patterns of four sequence features, V$ELK1_02(20), V$E2F1_Q4_01(10), V$NRF1_Q6(10) 
and JSP$NF_Y(10) (the left red boxes indicates the presence of sequence features). The distributions of their differential 
expression values between G1 and G3 are displayed using box plots.
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meta-expression value. Compared to previous methods,
our method more efficiently analyzes motif combination
without thresholding meta-expression values (see Addi-
tional file 1). It should be noted that found motif combi-
nations are no guarantee of a true synergistic, cooperative
interaction of the related TFs; further studies remain to be
done for analysis of motif interactions. Utilization of
meta-expression values is also a novel feature of our
method. Although we focused on histological grade and
prognosis of breast cancer in this study, our approach can
easily be extended to analyze other pathologies and other
clinical variables. In addition to these features, we found
that our method is robust on the data complexity; we
found that our method leads to essentially the same result
for grade-associated motifs even if we use only half of the
patient data (see Supplementary Table 6 in Additional file
1).

Our analysis identified cis-regulatory motifs bound by
ELK1, E2F1, NRF1 and NFY as principal motifs associated

with breast cancer malignancy. ELK1 is a member of the
ETS transcription factor family. Because the ETS family of
transcription factors binds to similar motifs with a central
core sequence GGA(A/T), ELK1 binding motifs are poten-
tially bounded by other ETS family members. It has been
reported that many of them are downstream nuclear tar-
gets of Ras-MAP kinase signaling, and the deregulation of
the ETS genes results in malignant transformation and
tumor progression. Several ETS genes are rearranged in
human leukemia and Ewing tumor to generate chimeric
oncoproteins. Furthermore, the aberrant expression of
several ETS genes is often observed in various types of
human malignant tumors [29]. Many of the ETS family
transcription factors are upregulated in the G3 popula-
tion: ETV7(Q = 7.79 × 10-5), ELF4(Q = 0.00182), ELF5(Q
= 0.0270), GABPA(Q = 0.0301), SPIB(Q = 0.0344),
ELF3(Q = 0.0383), ETV4(Q = 0.0386) and ETS1(Q =
0.0468). A recent study based on integrative bioinformat-
ics also suggests that a ETS-directed transcriptional pro-
gram is involved in malignant progression of prostate

Table 1: Motif associated with histological grades or prognosis identified based on independent datasets

aMotif ID bReproducibility cP value for training data dP value for test data

JSP$NF_Y(20) 20 3.1 × 10-10 0.000158
V$NRF1_Q6(10) 15 3.09 × 10-14 6.02 × 10-7

motifs associated with histological grades based 
on the data by Sotiriou et al.

V$ELK1_02(20) 12 9.25 × 10-26 1.41 × 10-6

DME$CTTCCGSYN(5) 9 5.71 × 10-14 6.82 × 10-5

V$E2F1_Q4_01(5) 7 5.71 × 10-15 0.002372

JSP$NF_Y(10) 15 2.46 × 10-14 0.011049
DME$RMSYSSARGCGC(5) 11 4.02 × 10-5 0.063412

V$ELK1_02(10) 10 2.03 × 10-16 2.08 × 10-7

motifs associated with prognosis based on the 
data by Sotiriou et al.

DME$YYYGSGCMYGCG(5
)

8 1.65 × 10-9 0.008054

V$E2F1_Q4_01(10) 8 1.05 × 10-17 2.37 × 10-5

V$IRF_Q6_01(10) 7 2.06 × 10-8 0.000152
DME$NMSTTCYKSYR(5) 6 0.000669 0.084446

V$NRF1_Q6(20) 6 9.02 × 10-22 1.31 × 10-6

JSP$NF_Y(20) 22 5.93 × 10-8 0.01116
motifs associated with histological grades based 

on the data by Pawitan et al.
V$E2F1_Q4_01(5) 10 6.56 × 10-7 0.049423

DME$RCRKGCGCAVN(5) 6 5.71 × 10-8 0.060899
V$E2F1_Q4_01(15) 6 9.59 × 10-6 0.017285

V$ELK1_02(20) 16 1.26 × 10-27 6.13 × 10-12

V$NRF1_Q6(15) 11 9.2 × 10-23 3.89 × 10-7

motifs associated with prognosis based on the 
data by Pawitan et al.

V$NRF1_Q6(20) 11 4.31 × 10-22 2.49 × 10-7

V$ELK1_02(15) 9 1.63 × 10-25 6.41 × 10-11

DME$RCGCHKGCGY(5) 6 3.23 × 10-20 4.8 × 10-6

aIDs starting from "V$", "JSP$", and "DME$" Motifs denote motifs from the TRANSFAC database, the JASPAR database, and our DME analysis, 
respectively, followed by values of the threshold parameter for motif searches in parentheses.
bThe number of appearances of sequence feature in 30 searches with bootstrap resampling.
cdP values calculated by Wilcoxon rank sum tests for training and test data, respectively.
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cancer [30]. Further integrative studies are required to
examine whether ETS-directed transcriptional programs
contributes to malignancy in various types of tumors.

The E2F family includes transcription factors which form
heterodimer complexes with DP proteins and recognize a
common motif [31]. The E2F family of proteins is known
to be a master regulator of the cell cycle. The association
of the E2F motif with G3 is therefore consistent with the
fact that the histological grading criteria include the
mitotic index and that G3 tumors are defined as highly
proliferative. We also observed that most of the E2F fam-
ily members and two DP genes are significantly upregu-
lated in G3 tumors: E2F8(Q < 10-6), E2F3(Q < 10-6),
E2F1(Q < 10-6), E2F6(Q = 3.14 × 10-5), E2F5(Q = 0.0219),
DP2(Q = 0.00167) and DP1(Q = 0.0111).

NFR1 has been reported to induce nuclear-encoded mito-
chondrial genes and increase mitochondrial respiratory

capacity [32]. Though no clear function of NRF1 in cancer
cells has been reported, our finding that the NRF1-bind-
ing motif correlates with tumor malignancy may reflect
hypermetabolism in aggressive tumors. It has also been
reported that NRF1 collaborates with E2F family members
to regulate genes involved in cellular proliferations [33].

The NFY-binding motif, the CCAAT box, is one of the first
identified and most common elements in eukaryotic pro-
moters. On the other hand, elucidation of regulatory net-
works involving NFY motifs has been hampered by their
generality. Our result raises the possibility that NFY-bind-
ing motif functions malignant breast cancers coopera-
tively with other factors. In fact, a previous study reported
that NFY and E2F functionally interact to regulate cell
cycle genes [34].

Although we successfully identified above regulatory
motifs, we failed to identify the motifs bounded by tran-

Sequence features associated with the correlation value calculated for breast cancer prognosisFigure 4
Sequence features associated with the correlation value calculated for breast cancer prognosis.
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scription factors that are thought to be more critically
associated with breast cancer malignancy, including the
estrogen receptor and p53. One reason for this failure is
that, since the number of target genes varies between tran-
scriptional regulators, our method "skims off" only strong
signals from motifs bound by regulators having a suffi-
cient number of target genes. However, a more likely rea-
son is that our method focuses on only proximal
regulatory sequences. Each TFs has a positional prefer-
ence: some TFs bind mainly proximal promoters around
the TSSs while others can act on distal enhancer
sequences. Recent comprehensive ChIP analyses have
clearly shown that the estrogen receptor and p53 have a

broad range of positional preference [35,36]. Computa-
tional predictions [22] and genome-wide experiments
[37,38] have just started to produce distal regulatory
sequence data; incorporation of such information will
solve this problem.

In cancer cells, genetic and epigenetic alterations also have
great impact on gene expression at the mRNA level. Cur-
rently, comprehensive data of genomic copy number [39]
and epigenetic status [40] are also accumulating. One of
the next important challenges will be to incorporate them
and decompose gene expression signals from different
molecular mechanisms.

Dependency of the correlation value with breast cancer prognosis on sequence featuresFigure 5
Dependency of the correlation value with breast cancer prognosis on sequence features. Genes are divided into 
five groups based on patterns of four sequence features, V$ELK1_02(5), V$E2F1_Q4_01(10), V$NRF1_Q6(15) and 
JSP$NF_Y(10) (the left red boxes indicates the presence of sequence features). The distributions of their correlation value 
with breast cancer prognosis are displayed using box plots.
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Considering the exploding availability of genome-wide
experimental data, we can be optimistic that the integra-
tive bioinformatics approach will circumvent these limita-
tions in the near feature. Future work will focus on further
refinement of our approach toward a deeper understand-
ing of transcriptional programs in cancer cells.

Conclusion
In this study, we introduced a new approach to analyze
cancer microarray data. While many studies have focused
on correlation between gene expression and a clinical
phenotype, our method associates cis-regulatory motifs
with clinical phenotypes. This approach offers a more
concise description of transcriptome diversity among
samples with different clinical phenotypes. Using this
method, we demonstrated that cis-regulatory motifs
bound by ELK1, E2F, NRF1 and NFY are most significantly
associated with breast cancer malignancy. Our data sug-
gest that they are principal regulatory motifs driving breast
cancer malignant progression.
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