
Multiple Sequence Assembly from Reads
Alignable to a Common Reference Genome

Qian Peng and Andrew D. Smith

Abstract—We describe a set of computational problems motivated by certain analysis tasks in genome resequencing. These are

assembly problems for which multiple distinct sequences must be assembled, but where the relative positions of reads to be

assembled are already known. This information is obtained from a common reference genome and is characteristic of resequencing

experiments. The simplest variant of the problem aims at determining a minimum set of superstrings such that each sequenced read

matches at least one superstring. We give an algorithm with time complexity OðNÞ, where N is the sum of the lengths of reads,

substantially improving on previous algorithms for solving the same problem. We also examine the problem of finding the smallest

number of reads to remove such that the remaining reads are consistent with k superstrings. By exploiting a surprising relationship with

the minimum cost flow problem, we show that this problem can be solved in polynomial time when nested reads are excluded. If nested

reads are permitted, this problem of removing the minimum number of reads becomes NP-hard. We show that permitting mismatches

between reads and their nearest superstrings generally renders these problems NP-hard.

Index Terms—Combinatorics, sequence assembly, haplotyping, chain and antichain, superstring.

Ç

1 INTRODUCTION

DRAMATIC developments in high-throughput sequencing
technology have opened the door to numerous new

applications of DNA sequencing. Many of these applica-
tions can be described as “resequencing” experiments,
where a reference genome has already been sequenced for
the organism of interest or another organism that is closely
related. When a reference genome is available, sequenced
reads can be aligned to the reference genome and there is no
need for de novo sequence assembly. Applications that
depend on aligning reads to a reference genome include
ChIP-seq [39], RNA-seq [36] and individual variation
studies [27]; these sequencing applications have had a
significant impact on genome sciences in recent years. As
long as a reference genome is available, no assembly is
required for these applications. In certain other sequencing
applications, while traditional sequence assembly is not
required, relationships between individual reads must be
considered despite the existence of a reference genome.
Here we examine algorithmic problems motivated by
sequencing applications where the goal is to assemble
multiple closely related genomes present in the same
sequenced sample. We assume that reads can be mapped
to a common reference genome, so the relative positions of
reads are known, but work remains to determine which
reads correspond to the same superstrings. This type of
assembly problem emerges in a surprising variety of
biological data analysis contexts.

The simplest such problems are associated with haplo-
type inference, and are already both well-known and well-
studied. Haplotype inference seeks to infer a pair of distinct
haplotypes using reads sequenced from a diploid organism.
Haplotype inference is of great medical importance, both to
help understand the relationship between genotypes and
disease phenotypes [18] and as the basis for personalized
medicine [4]. Various optimization problems have been
formulated for haplotyping a population of individuals from
the same species or closely related species [1], [26], [11], [33]
and for haplotyping a single individual [31]. While these
problems are often NP-hard, some heuristics have been
effectively employed in practice. For example, a greedy
heuristic with iterative refinement of the initial solution was
employed to infer the haplotypes of heterozygous loci of an
individual genome [32]. Another method that has proven
effective in practice is to use a general technique founded in
statistics, such as Markov Chain Monte Carlo [3]. The
difficulty of these problems seems to result from sequencing
errors, and one general approach to address sequencing
errors is to include a stage of either removal of erroneous
reads or error correction [38]. For example, the minimum SNP
removal (single nucleotide polymorphism) and minimum
fragment removal variants were defined for the individual
haplotyping problem as a means of producing data that may
be assumed error-free [2].

Research on haplotype inference has focused on diploid
species. Polyploidy refers to the state of an organism having
more than two sets of homologous chromosomes [37].
Polyploid species have been found among plants, animals
and fungi. For example, some species of the sturgeon order
Acipenserformes have up to 500 chromosomes and are
classified as functional octaploids with eight copies of each
chromosome [34]. Several degrees of ploidy have been
observed among frogs, and Xenopus ruwenzoriensis has 12 sets
of homologous chromosomes [29]. The phenomenon is

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2011 1283

. Q. Peng is with the Department of Computer Science & Engineering,
University of California, San Diego, 9500 Gilman Drive, Mail Code 0404,
La Jolla, CA 92093-0114. E-mail: qpeng@cs.ucsd.edu.

. A.D. Smith is with the Division of Biological Sciences, University of
Southern California, 1050 Childs Way, RRI 201, Los Angeles, CA 90089.
E-mail: andrewds@usc.edu.

Manuscript received 8 Jan. 2010; revised 21 Apr. 2010; accepted 1 Aug. 2010;
published online 18 Oct. 2010.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBB-2010-01-0008.
Digital Object Identifier no. 10.1109/TCBB.2010.107.

1545-5963/11/$26.00 � 2011 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM

particularly common in plants, where estimates indicate that
more than 70 percent of species of flowering plants have had
some ploidy increase in their history [35]. Polyploidy also has
important implications for crop improvement due to the
associated evolutionary advantages [45]. These advantages
are derived from the generation of genomic diversity
through gene duplication, but without negatively affecting
dosage relationships of functionally related genes [37]. To
understand the role of polyploidy in evolution requires
methods for inferring haplotypes of polyploid organisms.
However, traditional haplotype inference algorithms are
specifically restricted to pairs of haplotypes, and cannot be
directly applied to polyploid species.

In the field of metagenomics the aim is to understand
heterogenous populations of organisms by sequencing
samples from those populations [43]. Most commonly the
focus is on bacterial populations, for example, those in soils
or deep-ocean niches [44] or those living in the human gut
[23]. Specific goals of metagenomic experiments include
quantifying genomic diversity, identifying species present
in a population and quantifying the relative frequencies of
species. Because so many bacterial and viral genomes
already exist in sequence databases, reads from metage-
nomics projects can often be mapped to a reference genome.
Frequently the reference consists of a specific gene (e.g.,
16S rRNA) common to all organisms of interest. Sequenced
reads can be mapped to this gene, and matches and
mismatches between reads can be used to distinguish the
individual species in the sample. For an unknown number
of haplotypes in sequencing of virus genomes, Eriksson et
al. (2008) reconstructed haplotypes assuming error-free
reads (following an error correction stage) with relative
positions known prior to the assembly stage [10].

The field of epigenomics presents yet another example of
an assembly problem where multiple sequences must be
assembled but with the assistance of a reference genome.
DNA methylation in mammals occurs primarily at CpG
dinucleotides. Healthy differentiated cells have high levels
of methylation genomewide, with small regions of very low
methylation. These regions of low methylation are usually
at CpG islands (which have a high density of CpG
dinucleotides) and occur commonly at gene promoters
and enhancer regions. Aberrant methylation is a general
feature of cancer genomes; a greater understanding of
methylation patterns in cancer genomes may lead to both
new therapies and new diagnostic markers based on the
detection of methylation-based changes occurring early in
tumorigenesis [30]. Because DNA methylation is replicated
through mitosis, but at a lower fidelity than the DNA itself,
DNA methylation patterns can act as markers for individual
clones, providing a basis for tracing stem-cell expansion
and tumor growth [46], [42], [28]. Making use of methyla-
tion patterns in this way requires determining methylation
patterns associated with individual cells or cells from the
same clone. Bisulfite sequencing can be used to identify
methylation states at CpGs covered by individual reads, but
to identify methylation patterns of individual cells requires
some way of assembling the binary (methylated CpG
versus unmethylated CpG) patterns inside individual
reads. Since any sample may contain an arbitrary number

of distinct methylation patterns, and the reads can be
mapped back to a reference genome, this problem repre-
sents another example of assembling multiple sequences (in
this case sequences of methylation states) from reads
mapping to the same reference.

The rest of this paper is organized as follows: In Section 2,
we formally define four variations on our central problem. In
Section 3, we treat the most basic variant, where the goal is to
find the minimum number of superstrings such that all reads
are consistent with at least one. We present a novel OðNÞ
time algorithm, where N is the sum of the lengths of reads
given as input. This is a linear time algorithm—an important
feature since potential inputs may reach one hundred
million reads, and continue to grow. In Section 4, we
examine the problem of identifying a set of k superstrings
such that the greatest number of reads match at least one
superstring. Under the assumption that reads are not nested
(a concept defined in Section 2), we describe a polynomial
time algorithm for this variant. The algorithm is based on the
elegant method of Andras Frank developed to unify earlier
results about chains and antichains of partially ordered sets
[17]. In Section 4.3, we show that when nested reads are
permitted, the problem becomes NP-complete.

2 BACKGROUND AND PROBLEM DEFINITIONS

DNA-sequencing experiments determine the sequences of
nucleotides appearing in fragments of DNA molecules from
some biological sample. When one of these DNA fragments
is examined by a sequencing instrument, the sequence of
nucleotides is produced as a string called a read. The details
of how the reads are produced from the sample of DNA
molecules depend on the exact sequencing technology used.
Regardless of the technology, each sequencing experiment
produces a set of reads—possibly an extremely large set.
The reads provide information to help understand some
aspect of the DNA molecules from the original sample of
cells. The current “second-generation” sequencing technol-
ogy has vastly improved both throughput and cost of
sequencing experiments [41]. Second-generation technolo-
gies typically produce tens to hundreds of million reads per
experiment at a cost currently accessible to most labs, and at
a cost that is still falling rapidly.

The vast numbers of reads produced by second-genera-
tion sequencing technologies currently have lengths ran-
ging roughly between 50 and 500 nucleotides. Based on
recent trends, it seems likely that both read lengths and
number of reads will continue to increase, with technologies
currently under development promising order of magni-
tude improvements [21], [40].

Many applications of second-generation sequencing
depend on the existence of a reference genome. Reads are
aligned to the reference genome in a process usually called
mapping. The process of mapping reads identifies the
location in the reference genome most similar in sequence
to each read; this location is presumed to be the genomic
origin of the fragment sequenced to produce the read.
Mapping cannot require perfect matching between reads
and the reference genome, however, for two reasons. First,
the sequencing instruments make errors when identifying
nucleotides at each position of a read. Fortunately, the

1284 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2011

accuracy of sequencing instruments constantly improves.
Second, individual organisms, even within the same
species, have differences in their genomes. The amount of
individual genomic variation differs for different species.
As we have noted in the introduction, many applications of
second-generation sequencing seek to identify these varia-
tions and understand their effects on important phenotypes,
such as diseases. Other applications, including assembling a
new species using the sequence of a previously assembled
related species, attempt to be robust to differences in order
to leverage the existing reference genome. In these applica-
tions, the differences between reads and the reference
genome are critical to the experiments, and, therefore, it is
common to have reads with distinct sequences mapped to
the same location in the reference genome.

Problems we consider are based on resequencing applica-
tions where the sequenced sample is somehow heteroge-
nous. In our introduction we described several contexts
where such problems can emerge. We will use the example of
inferring haplotypes for polyploid species to give some
intuition for the computational problems we define. The
different haplotypes in a polyploid will differ from each
other, and also differ from any single reference genome, but
will have sufficient similarity that they can all be mapped to a
single genome. The practical task is to infer the original
sequences by partitioning the mapped reads according to the
haplotypes from which they originated. Clearly such tasks
depend on having sufficient divergence between the original
sequences that we may distinguish them.

Throughout this paper, we use the notation x½i� to denote
the letter appearing at position i of a string x, and for
positions i � j, we let x½i; j� denote the substring of x from i
to j, inclusive.

Let R be a set of strings, which we assume are reads
produced in a sequencing experiment. Define n ¼ jRj and
for each ri 2 R we use the notation jrij for the length of ri
(and similar notation for the length of strings in general).
We use the symbol S to denote a set of superstrings
(contiguous sequences or contigs) we wish to assemble
using the reads of R. We use m to indicate the length of the
reference genome, which is an upper bound on the length of
members of S.

Recall that the reads have been mapped to some
common reference genome. We define the position function

p : R 7! fða; bÞ : 1 � a � b � mg

to indicate the position in the reference genome where each
read maps. For each ri 2 R, if pðriÞ ¼ ðai; biÞ, then ri maps to
the reference starting at position ai and ending at
bi ¼ ai þ jrij � 1. These are closed intervals. For conveni-
ence when we use the notation ai and bi it will be implicit
that for a specific ri; pðriÞ ¼ ðai; biÞ, and the identity of the
specific ri will be clear from the subscripts.

We define the distance between a read r 2 R and a
superstring s 2 Am, where A is the sequence alphabet, as
the number of corresponding positions where r and s
disagree:

dpðr; sÞ ¼ jfx : r½x� 6¼ s½aþ x� 1� where

pðrÞ ¼ ða; bÞ and 1 � x � jrjgj:

This is the Hamming distance between r and the corre-
sponding substring of s, and is only defined if s is
sufficiently long that s½aþ x� 1� exist. Note that insertions
and deletions are ignored. We also define the consistency
relation between r and s as the symmetric Boolean relation

Cpðr; sÞ , dpðr; sÞ ¼ 0;

and when Cpðr; sÞ we say r and s are consistent with each
other. We also extend the notion of consistency to pairs of
reads. For any two reads r; r0 2 R,

Cpðr; r0Þ , 9s 2 Am : Cpðr; sÞ ^ Cpðr0; sÞ:

We now formally define the first and most basic problem
variant we will address.

Referenced Multiple Assembly (RMA)
Input: A set R of strings, jRj ¼ n, a position function p and a
positive integer k.
Objective: Determine whether there exists a set S of strings,
with jSj ¼ k, having the property that for any r 2 R there
exists an s 2 S such that s is consistent with r.

One optimization version of RMA seeks to minimize k,
which in several situations corresponds to a most parsimo-
nious set of superstrings to explain the observed reads. The
optimal solution in many cases may not be unique.

By defining p as a function we have required that each
read be mapped to a unique location in the reference
genome. It is possible that a read aligns equally well to more
than one location, and in this case we say the mapping is
ambiguous. Depending on the sequencing application,
there may be a small or large proportion of reads that
map ambiguously. Although certain sequencing applica-
tions can make use of ambiguously mapping reads, the
most common approaches to deal with them in practice are
to either discard them or to select one among multiple
optimal mapping locations. We assume that some strategy
has been used for dealing with ambiguously mapping
reads, and therefore each read has exactly one mapping
location. We also remark that as read lengths increase, the
proportion of ambiguously mapping reads drops rapidly.

An example instance of RMA is shown in Fig. 1. In this
example the reads all have the same length (17 nt) and are
all alignable to a single reference. When the reads are
restricted to the informative positions where at least one
pair of reads differs, the lengths of the reads from Fig. 1a is
reduced in Fig. 1b to between 3 nt and 5 nt. This example
illustrates how a simple intuitive greedy approach does not
guarantee to find a smallest set of superstrings consistent
with all reads. This greedy algorithm proceeds as follows:
Start by selecting any read having no others preceding it in
order of the position function p (sorted on first coordinate,
then second). Let that read be the beginning of the first
superstring. Then grow that superstring by sequentially
appending letters from a read that is both consistent with,
and has the greatest overlap with, the superstring. Once no
remaining reads can be used to extend the superstring, a
new superstring is constructed in the same manner from the
remaining reads. A result of applying this greedy algorithm
can be seen in Fig. 1c, where 4 superstrings have been
assembled. The minimum number in this example is 3,
which can be seen in Fig. 1d.

PENG AND SMITH: MULTIPLE SEQUENCE ASSEMBLY FROM READS ALIGNABLE TO A COMMON REFERENCE GENOME 1285

Observe that in Fig. 1c, the superstrings s2 and s4 contain
“-” symbols, which indicate gaps in the assembled super-
strings. Those are positions not covered by any reads that
must match that superstring. We assume that these gaps are
filled with arbitrary letters. The complexity of an algorithm
is bounded from below by the size of its output, and
explicitly filling the gaps would mean that any set of k
superstrings has size km. Our algorithms fill these gaps in
some concise way, such as indicating the positions and size
of gaps, rather than explicitly placing letters in them.

The example of Fig. 1 also helps to illustrate another subtle
point. When the reads are reduced to informative positions,
where the definition of “informative” may depend on the
application, then the reads we process may be much shorter
than the actual reads produced by the sequencing instru-
ment. In addition, we may observe a pair of reads that differ
at most or all of their positions, despite covering the same
positions (e.g., r5 and r6 in the example). Another possibly
counterintuitive observation is that when the reads are
reduced to some subset of their positions, then among the
reads that must be assembled, two reads at different
positions may appear identical at the sequence level. While
this can arise as an artifact of eliminated non-informative

positions from the reads, in our definition for the RMA

problem we make no presumptions on why identical reads

may be at different positions.
In what follows, we will use existing results about partially

ordered sets (posets), and define these concepts here.

Definition 1 (Partially Ordered Set; Poset). A partially

ordered set, or poset, is a pair ðX;�Þ, where X is a set and �
is a relation satisfying:

1. x � x (reflexivity)
2. if x � y and y � x then x ¼ y (antisymmetry)
3. if x � y and y � z then x � z (transitivity)

for all x; y; z 2 X. If ðX;�Þ is a partially ordered set, a subset

X0 of X is called a chain if x � y or y � x for all x; y 2 X0. A

subset X0 of X is called an antichain if for all x; y 2 X0,
neither x � y nor y � x.

We define the position order relation �p as follows: For

reads ri; rj 2 R, with pðriÞ ¼ ðai; biÞ and pðrjÞ ¼ ðaj; bjÞ,

ri �p rj , ðai < aj _ ðai ¼ aj ^ bi � bjÞÞ:

1286 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2011

Fig. 1. An example illustrating the referenced multiple assembly problem. This example reflects the practical task of inferring a most parsimonious
haplotype set for a polyploid species. (a) A set of reads from a heterogenous sample (e.g., polyploid species) aligned to a reference genome.
(b) Reads when restricted to only those positions that differ between reads, along with a position function, relative only to those informative positions.
(c) A set of four superstrings assembled from the reads (“-” represents positions unconstrained by the reads). (d) A set of three superstrings (the
minimum) assembled from the reads; this represents a most parsimonious set of haplotypes for a polyploid species.

We also define an augmentation of the position order to
account for the sequence of each read:

ri �q rj , ðai < aj _ ðai ¼ aj ^ bi < bjÞ _
ðai ¼ aj ^ bi ¼ bj ^ ri �lex rjÞÞ;

ð1Þ

where �lex is the lexicographic order for strings. When we
must assume the reads are presented to an algorithm in
some particular format, we assume pairs of the form
ðr; pðrÞÞ, and that the reads are presented in �q order. This
is the most natural way to store reads after they have been
mapped to a reference genome: with sequence and
mapping location together, sorted according to the mapping
location. Note that the lexicographic order is not required in
our algorithms for strings that are mapped to the same
location and have same length.

Let r 2 R, with pðrÞ ¼ ða; bÞ. If a � x � b, we say that r
covers position x. We say that position x in the reference
genome and position x0 in r are corresponding positions, if
x ¼ aþ x0 � 1. This can be visualized as position x0 in read r
positioned directly above position x in the reference
genome when r is aligned to the genome. For reads
r; r0 2 R, if position x in r corresponds to genomic position
y, and genomic position y corresponds to position x0 in r0,
then position x in r corresponds to position x0 in r0.

Under certain assumptions, we can define a useful partial
order on the reads R. For all ri; rj 2 R define the relation

ri � rj , ðri �p r2 and Cpðr1; r2ÞÞ:

When all reads have the same length then ðR;�Þ is a poset.
The assumption of uniform length reads is often reasonable,
as some popular sequencing technologies currently produce
reads of uniform length. Two of the most popular current
technologies (the Illumina/Solexa technology and the ABI
SOLiD technology) each produces reads of equal lengths,
although we remark that postprocessing in both technolo-
gies is a quality clipping which may result in uneven read
length when low-quality ends of reads are removed.
Technologies that sequence by synthesis [21] will often
produce the majority of reads with the same length.

The benefit of the poset ðR;�Þ is that it allows the RMA
problem to be transformed into a well-studied combinatorial
problem. The following famous result about posets provides
a convenient characterization for the RMA problem.

Theorem 1 (Dilworth’s Theorem [8]). Suppose P is a partially
ordered set, and no antichain of P contains more than k
elements. Then P can be partitioned into k disjoint chains.

The maximum size of an antichain of a poset is called its
width. Consequently, if the width of poset ðR;�Þ is at most
k, then there exists a set S of superstrings, with jSj ¼ k, such
that each r 2 R is consistent with at least one s 2 S. A
minimum chain partition of ðR;�Þ can be found using the
device of maximal bipartite matching, as shown in the proof
of Dilworth’s Theorem given by Fulkerson [20]. This
method has been employed by Eriksson et al. (2008) in
the context of viral metagenomics to reconstruct a set of
haplotypes that best explain the error-corrected reads [10].
The approach taken was to explicitly convert the RMA
problem into a directed acyclic graph (a natural poset
representation) and obtain a minimum chain partition of
the poset using bipartite matching. This method has cubic

time complexity in the number of reads given as input. For
a given value of k, Felsner et al. describe an algorithm that
can find a partition of a poset into k chains, or determine
that none exists, in Oðkn2Þ time [12]. The method of Felsner
achieves the fastest asymptotic time performance as a
function of n.

Although having reads with equal length is sufficient for
ðR;�Þ to be a poset, this condition is not necessary. A more
general condition that is also sufficient is that reads cannot
be nested. We say that read r is nested in read r0 if

a0 < a; b < b0 and Cpðr; r0Þ;

where pðrÞ ¼ ða; bÞ and pðr0Þ ¼ ða0; b0Þ. When the RMA
problem is used to model the inference of multiple haplo-
types, the set R may actually correspond to subsequences of
reads, restricted to positions of informative SNPs. In this case,
members of R may effectively have different lengths, but no
nesting will be observed as long as the actual reads have equal
lengths. It is straightforward to show that when no nesting is
permitted, the order ðR;�Þ is a partial order on the reads,
regardless of possible variation in lengths of reads.

Proposition 1. If nesting of reads is not permitted, ðR;�Þ is a
poset.

Proof. Reflexivity and antisymmetry of � over R can be
demonstrated regardless of whether nesting is per-
mitted. To verify transitivity, let ri; rj; rk 2 R and assume
ri � rj and rj � rk. It is immediate from the definition of
�p that ai � aj � ak. Because nesting of reads is not
permitted, bi � bj � bk, so ri �p rk. If the interval pðrjÞ
intersects at most one of pðriÞ and pðrkÞ, then pðriÞ and
pðrkÞ do not intersect and Cpðri; rkÞ holds trivially.
Otherwise we assume pðriÞ and pðrkÞ have a nonempty
intersection with pðrjÞ. Since both Cpðri; rjÞ and Cpðrj; rkÞ,

pðriÞ \ pðrkÞ � pðriÞ \ pðrjÞ \ pðrkÞ

is a sufficient condition for Cpðri; rkÞ, which holds
trivially if pðriÞ \ pðrkÞ is empty. If not, once more using
the premise of nonnested reads,

pðriÞ \ pðrjÞ \ pðrkÞ ¼ ðaj; biÞ \ ðak; bjÞ
¼ ðak; biÞ
¼ pðriÞ \ pðrkÞ

and the sufficient condition is seen to hold. tu
A sequencing error occurs when the sequencing instru-

ment incorrectly identifies the nucleotide appearing at a
particular position in a read. Although different sequencing
technologies use different methods to determine the nucleo-
tides of a read, every technology has some error rate. The
RMA problem can be reformulated to explicitly account for
sequencing errors. In the following variant, the goal is to
minimize the total number of mismatches occurring between
reads and the superstring they match most closely.

Minimum Distance RMA (MD-RMA)
Input: A set R of strings, jRj ¼ n, a position function p and a
positive integer k.
Objective: Find a set S of strings, with jSj ¼ k, minimizing

X

r2R
min
s2S

dpðr; sÞ:

PENG AND SMITH: MULTIPLE SEQUENCE ASSEMBLY FROM READS ALIGNABLE TO A COMMON REFERENCE GENOME 1287

While this problem seeks to minimize a sum of distances
(i.e., mismatches), a less natural objective could be to bound
the allowed sum of distances and seek to minimize the
value of k. MD-RMA is actually a generalization of the
parameterized binary minimum error correction (PBMEC).
The difference between MD-RMA and PBMEC is that
PBMEC assumes a binary alphabet. Unfortunately, it has
already been shown that PBMEC is NP-hard [5], and these
results extend directly to MD-RMA.

An alternative way to incorporate mismatches between
reads and superstrings has an objective function that
minimizes the maximum number of mismatches between
any read and the closest superstring.

Bounded Distance RMA (BD-RMA)
Input: A set R of strings, jRj ¼ n, a position function p and a
positive integer k.
Objective: Find a set S of strings, with jSj ¼ k, minimizing
the value D such that for all r 2 R,

min
s2S

dpðr; sÞ � D:

As with the MD-RMA problem, we could include the value
of D as part of the problem instance, and the objective to
minimize k. Bounding the value of D may be a natural
restriction (more so than bounding the sum in MD-RMA)
because frequently in practice reads are used if they have at
most some number of mismatches with respect to the
reference, reflecting the notion that a few sequencing errors
in reads can be permitted, but too many might be indicating
a systematic problem.

We show BD-RMA is NP-hard through a trivial reduc-
tion from a problem known as the minimum radius of a
code. Let C be a binary code of length m, that is, C � f0; 1gm.
For two vectors u; v 2 f0; 1gm, denote the Hamming dis-
tance between them by dðu; vÞ. Define the Hamming ball of
radius D and center u 2 f0; 1gm as the set

Bðu;DÞ ¼ fv 2 f0; 1gm : dðu; vÞ � Dg:

Radius of code C is the smallest integer D that C � Bðu;DÞ
for some vector u. The following problem concerning the
radius of a code has been shown NP-complete [16].

Minimum Radius of a Code (MR)
Input: A code C � f0; 1gm and a positive integer D.
Objective: Determine whether the radius of C � D?

When the BD-RMA problem is restricted such that jrij ¼ m
for all i, and the alphabet is f0; 1g, it is equivalent to the MR
problem, which immediately implies that BD-RMA is NP-
hard. This leaves open the complexity of the case where
each jrij is oðmÞ. Because MR places such strong restrictions
on BD-RMA, the BD-RMA is likely much harder and would
benefit from a deeper complexity analysis.

We do not address the issue of approximability for these
NP-hard problems, but make the following remarks: As with
many optimization problems involving distances, we can
formulate corresponding problems by changing the distance
measures in MD-RMA and BD-RMA to similarity measures.
The objective then would be to maximize the similarity—the
sum of similarities for MD-RMA and the minimum similarity
for BD-RMA. The most obvious way to obtain a similarity

measure from the Hamming/mismatch distance is to replace
dpðr; sÞ above with jrj � dpðr; sÞ. When all reads have the
same length, the similarity and distance versions of
the problems have coinciding optima. However, when the
read lengths vary, the sets of superstrings that optimize the
distance may not be those that optimize the similarity.

Another way to account for errors or “noisy” data is to
regard some subset of the reads as “bad” in some way.
These bad reads may be contamination in the sequenced
sample (a problem independent of any technology). Proble-
matic reads may also reflect a distribution of sequencing
errors that concentrates a high proportion of errors in a
small proportion of the reads—which is plausible because
sequencing errors are not independent from each other for
certain sequencing technologies.

With these problematic reads in mind, we may desire to
identify a set of superstrings that is consistent with all but
some relatively small set of reads that we then discard. A
most parsimonious solution would then be a set of super-
strings that minimizes the number of reads we must discard.
The variation of the individual haplotyping problem, known
as minimum fragment removal, is based on the same idea [2],
and we define an analogous variation on RMA.

Minimum Fragment Removal RMA (MFR-RMA)
Input: A set R of strings, jRj ¼ n, a position function p and a
positive integer k.
Objective: Find a set S of strings, with jSj ¼ k, maximizing
the size of R0 � R such that for all r 2 R0, there exists an
s 2 S with Cpðr; sÞ.
The difference between MFR-RMA and the MFR objective
for the individual haplotype assembly problem is that the
latter fixes the value k ¼ 2, assumes a binary alphabet and
may allow “gaps” in the reads, where no letter appears
(similar to allowing wildcard letters that can match any
letter of the alphabet). When gaps are not permitted, the
MFR-RMA problem is a generalization of the MFR problem
in haplotyping. Bafna et al. (2005) gave an Oðn2mþ n3Þ time
algorithm for the gapless case, where n is the number of
fragments (analogous to the reads in our terminology) and
m is the length of the haplotype (analogous to the
superstrings we assemble) [2]. We address the MFR-RMA
problem in Section 4.1, where we show that MFR-RMA can
be solved in polynomial time when reads cannot be nested.
In Section 4.3, we also show that allowing nested reads
immediately renders it NP-complete.

3 THE REFERENCED MULTIPLE ASSEMBLY

PROBLEM

In this section, we describe a linear time algorithm for the
RMA problem. By linear, we mean a linear function of the
number of letters in the input. While we assume that
the alphabet is of constant size and that any numbers
involved (e.g., values of the position function p) can be
manipulated in constant time with operations of the unit-cost
RAM model [6], our algorithm does not require reads to be of
equal length.

The approach we take here is to construct the super-
strings simultaneously. Reads are processed in �q order,
and for each read, some superstring may be extended by

1288 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2011

adding letters so that the read is consistent with the
superstring. We, therefore, ensure that a read is consistent
with at least one superstring before considering the next
read. Recall that we demonstrated in Section 2 that a
particular greedy strategy does not result in the smallest
number of superstrings. We show first that our strategy of
simultaneously growing multiple superstrings results in an
optimal solution, then we describe an algorithm to accom-
plish this strategy in linear time.

3.1 The Strategy of Conservative Extensions

We maintain a set of superstring prefixes as a partial
solution that is modified as each read is processed. Initially,
the partial solution is empty. After read ri is processed, the
current partial solution is the set Si and at least one member
of Si matches each rj �q ri. At each iteration, Si is obtained
by modifying Si�1.

Two kinds of modifications are used—extending an
existing superstring from Si�1 or adding a new superstring.
Suppose, there exists an s 2 Si�1 such that letters can be
appended to s so that the resulting string s0 is consistent
with ri. Then we let Si ¼ ðSi�1 n fsgÞ [fs0g. In this case, ri is
a suffix of s0, and we say that ri has extended s. Note that
the s we have specified may not be unique, and we will
explain shortly how to select an appropriate s.

If pðriÞ ¼ ðai; biÞ, and jsj < ai, then simply adding letters
from ri to s at corresponding positions will result in a gap in
s0. We assume there is some concise encoding used to fill
such a potential gap, otherwise the length m of superstrings
would impact time complexity.

If no member of Si�1 can be made to match ri by
appending letters, then each member of Si�1 already
mismatches ri at some corresponding position. In this case,
we let s be the empty string, and append letters to s
resulting in s0 being consistent with ri (again using some
encoding to fill in gaps not specified by the requirements of
consistency with ri). In this case, jSij ¼ jSi�1j þ 1.

When read ri is processed, the positions in the interval
ðai; biÞ completely determine whether zero, one, or multiple
members of Si�1 can be made consistent with ri by
appending letters. In case multiple members of Si�1 can
be made consistent with ri, the procedure we specified
above is ambiguous. The rule we use is to always select a
longest member of Si�1 that can be extended to match ri. We
refer to this as a conservative extension, because using this
rule adds the fewest letters to a member of Si�1. It is
possible that ri will already match some member of Si�1,
and so a conservative extension would actually append an
empty string. An illustration of conservative extensions can
be found in Fig. 2.

We now prove this strategy of processing each r 2 R in
�q order, using conservative extensions, arrives at an Sn of
minimal cardinality. We require another definition first. For
any set Si of superstring prefixes, with pðriÞ ¼ ðai; biÞ, a
completion for Si is a set Z of strings having length m� ai þ
1 with jZj � jSij and satisfying for all s 2 Si,

9z 2 Z : s½ai; jsj� ¼ z½1; jsj � ai þ 1�;

and for all rj 2 R, if ri �q rj,

9z 2 Z : rj ¼ z½aj � ai þ 1; bj � ai þ 1�:

That is, a completion appends letters to current superstring
prefixes, and possibly adds new superstrings, so that all
remaining reads are consistent with at least one. Notice that
a completion may be arbitrarily large, but must contain at
least one string for every string in Si. A minimal completion is
a completion of minimal cardinality. We make the follow-
ing observation:

Proposition 2. The set of completions for Si is fully determined
by Riþ1 ¼ R n fr1; . . . ; rig and the set of suffixes s½ai; jsj� for
each s 2 Si. In particular, given Riþ1 and Si with completion
Z, if we transform Si into S0i by removing terminal letters from
some s 2 Si, then Z is a completion for S0i.

Lemma 2. Suppose a set of superstring prefixes Si�1 has a
completion of size k. If Si is obtained from Si�1 using the
conservative extension rule, then Si will have a completion of
size k.

Proof. If no member of Si�1 can be extended to match ri,
then adding a new member in Si is necessary, and will
not increase the size of the minimal completion.

Suppose, some member of so 2 Si�1 can be extended
to match ri, resulting in Si having a completion of size k.
Let sc 2 Si�1 be selected by the conservative extension
rule, and suppose sc 6¼ so. Let s0o and s0c result from
extending so and sc, respectively, to match ri. Let S0i�1 ¼
Si�1 n fso; scg and define

SiðoÞ ¼ S0i�1 [fsc; s0og and SiðcÞ ¼ S0i�1 [fs0c; sog:

Because s0c and s0o are identical within the interval pðriÞ,
any difference in the set of completions for SiðoÞ and SiðcÞ is
completely determined by the suffixes of so and sc within
the interval pðriÞ. But the suffix of so in the interval pðriÞ is
a prefix of the suffix of sc in the same interval. Therefore,
by Proposition 2, the completion set for SiðoÞ is a subset of
the completion set SiðcÞ. In particular, any minimal
completion for SiðoÞ is also a completion for SiðcÞ, so sc
has a completion of size k. tu
We point out that any algorithm using the strategy of

conservative extensions will ensure, for each read ri 2 R,
that at least one superstring is consistent with ri after it has
been processed. Therefore, when the algorithm terminates,
the set of superstrings constructed will be a valid solution.

PENG AND SMITH: MULTIPLE SEQUENCE ASSEMBLY FROM READS ALIGNABLE TO A COMMON REFERENCE GENOME 1289

Fig. 2. Example of a conservative extension. When ri is processed
Si�1 ¼ fs1; s2; s3; s4; s5g. Although s2; s4, and s5 can be extended to
match ri, only s2 would be a conservative extension, since the number of
additional letters that must be appended to s2 is less than required for s4

and s5.

3.2 Conservative Extensions in Linear Time

Now we describe an algorithm that processes each read in
�q order to build each partial solution Si using conserva-
tive extensions. We make use of trie data structures [19].
Corresponding to each ri 2 R, define Ti as the smallest trie
encoding the strings

frj½ai � aj þ 1; jrjj� : rj �q ri with rj 6¼ ri;
pðriÞ ¼ ðai; biÞ and pðrjÞ ¼ ðaj; bjÞ

and ai � aj þ 1 � jrjjg:

Notice that Ti encodes suffixes of other reads overlapping ri
but does not necessarily encode ri. As Ti is used, it will be
updated to encode ri. Each node of v 2 Ti at depth x is
labeled with the identity of some rj �q ri such that the path
from the root to v spells

rj½ai � aj þ 1; ai � aj þ x�:

Each leaf in Ti, therefore, corresponds to a suffix of some
rj �q ri, and since these suffixes also correspond to distinct
superstrings in Si�1, we make the correspondence from the
leaves of Ti to distinct superstrings in Si�1.

Any superstring in Si�1 with no corresponding leaf in Ti
is called free, and we denote by F the set of free super-
strings. We use the notation SðriÞ ¼ s if s was extended to
match ri when ri was processed. To identify an s that can be
extended to match ri, walk down Ti following the path
corresponding to ri. There are three cases to consider:

1. All letters of ri are matched. In this case, ri is equal to a
substring of some rj �q ri, and we can therefore
ignore ri as it already matches SðrjÞ.

2. A leaf v is reached without matching all of ri. Let rj label
v. Then SðrjÞ can be extended to match ri. Add
nodes below v so Ti encodes ri, extend SðrjÞ to match
ri and set SðriÞ ¼ SðrjÞ.

3. Matching ri fails at an internal node v. If F 6¼ ;, extend
some s 2 F to match ri and set SðriÞ ¼ s. If F ¼ ;
create a new s 2 S matching ri and set SðriÞ ¼ s.
Add nodes below v so Ti encodes ri.

This algorithm implements conservative extensions, since in
step 2 the superstring extended has maximal overlap with

ri. Notice that the work required in each step is OðjrijÞ and
following execution of these steps ri is encoded in Ti. Before
processing riþ1, the trie Tiþ1 is obtained from Ti in the
following two steps:

1. T 0i is obtained as the forest of subtries rooted at
depth aiþ1 � ai in Ti.

2. Tiþ1 is obtained as [T 0i by sequentially taking jT 0i j � 1
unions of pairs of tries from T 0i .

These steps are partially illustrated in Fig. 3. When taking
unions of two tries, we specify one as persistent and the other
transient. The result of the union operation will be the
persistent trie with subtries added from the transient trie.
Taking the union of tries is done by walking paths common
to both tries. When a node is encountered that exists only in
the transient trie, the subtrie rooted at that node is added
to the persistent trie in constant time (e.g., by updating a link)
at the corresponding location.

It is straightforward to see that this method correctly
obtains Tiþ1 from Ti, since the forest T 0i contains all suffixes
required in Ti and the union of T 0i encodes an identical set of
suffixes. What remains is to bound the time required for
taking unions of tries.

Lemma 3. The time required for all trie unions is OðNÞ.
Proof. We bound the time complexity by bounding node

visits. Each node on a path, common to both the
persistent and transient tries, is visited once while
walking the common path. Nodes on the common path
in a transient trie are deleted following the union, and,
therefore, will never be visited again. The total time
required for walking the common paths in union
operations is then bounded by the number of nodes that
can be deleted, which cannot exceed the OðNÞ total nodes
created. Each time a subtrie is moved from the transient
trie to the persistent trie requires constant time. For each
node moved from a transient trie to the persistent trie, the
parent node is deleted, and since the OðNÞ parent nodes
that exist through the entire course of the algorithm have
OðNÞ total children (as we assume alphabet size is
constant), the total number of such subtrie relocations is
bounded by OðNÞ. tu

1290 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2011

Fig. 3. Example of updating Ti to obtain Tiþ1. Black nodes are roots of tries. In T 0i , square nodes indicate the path corresponding to ri : AGAGT.
Nodes at a depth less than aiþ1 � ai are removed from Ti, leaving the forest of tries T 0i rooted at nodes of depth aiþ1 � ai. Then, the union of T 0i is
taken, resulting in Tiþ1. This can be done in amortized linear time over all ri 2 R.

The conservative extensions strategy was shown correct
in Lemma 2 and Lemma 3 showed that this strategy can be
accomplished in OðNÞ time, giving the desired time bound.

Theorem 4. The referenced multiple assembly problem can be

solved inOðNÞ time, whereN is the sum of the lengths of reads.

4 REMOVING THE SMALLEST NUMBER OF READS

The objective of MFR-RMA is to determine the minimum
number of reads that must be removed from R so that all
remaining members are consistent with some size k set S of
superstrings. Even when the reads have uniform length,
this problem cannot be solved using an approach like the
conservative extensions described for solving RMA in
Section 3. Consider the MFR-RMA instance depicted in
Fig. 4a. When k ¼ 1, the optimal solution removes r2 and is
consistent with fr1; r3; r4g. Without examining r3 and r4,
however, there is no information to prevent the inclusion of
fr1; r2g, which subsequently precludes an optimal solution.

4.1 The Method of Andras Frank

A solution for the MFR-RMA problem can be obtained using
the elegant method described by Andras Frank in 1980 for
identifying chain and antichain families in partially ordered
sets [17]. In particular, Frank’s method identifies sets of k
chains (or antichains) whose union contains the most
elements from the poset. Recall from Section 2 that in the
absence of nested reads ðR;�Þ forms a poset, and that a chain
in ðR;�Þ consists of a subset of reads, all of which are
consistent with a single superstring. In 1976, as two distinct
generalizations of Dilworth’s Theorem, Greene and Kleitman
gave formulas for the maximum cardinality of the union of
h antichains and of k chains in a poset [24], [25]. The insight of

Andras Frank unified these results and provided an
algorithm for simultaneously finding optimal sets of k chains
and h antichains [17]. At the center of the algorithm is a
generalization of Fulkerson’s proof of Dilworth’s Theorem
[20]. The generalization indicates how finding a maximum
weight set of k chains can be reduced to that of finding a
minimum cost flow in a particular network. By leveraging this
reduction, the MFR-RMA problem can be solved in poly-
nomial time when reads are not nested.

Before explaining Frank’s reduction, we require addi-
tional notation. Let G ¼ ðV ;EÞ be a directed graph with
s; t 2 V , and let inðuÞ and outðuÞ denote the set of edges into
and out of node u, respectively. A function f : E 7! IR is
called an s� t flow if fðeÞ � 0 for all e 2 E,

X

e2inðuÞ
fðeÞ ¼

X

e2outðuÞ
fðeÞ for all u 2 V n fs; tg;

and the flow value is defined as

valueðfÞ ¼
X

e2outðsÞ
fðeÞ:

A capacity function has the form c : E 7! IR and we say a
flow f respects capacities c if fðeÞ � cðeÞ for all e 2 E. A cost
function is of the form � : E 7! IR and the cost of any flow f
is defined as

costðfÞ ¼
X

e2E
fðeÞ�ðeÞ:

The minimum cost flow problem is a fundamental problem
in combinatorial optimization, and has received much
attention over the past 50 years due to its importance as
an abstraction of computational problems arising in
transportation and shipping.

PENG AND SMITH: MULTIPLE SEQUENCE ASSEMBLY FROM READS ALIGNABLE TO A COMMON REFERENCE GENOME 1291

Fig. 4. The method of Frank applied to the MFR-RMA problem when nested reads are excluded. Background on network flows can be found in [7]
and [15]. All edges have capacity 1, and when arrowheads are omitted, are directed to the right. Solid edges have cost 0 and dashed edges have
cost 1. (a) The set R of reads used in the examples. (b) The flow graph corresponding to R, with a flow value of 2 (thick edges) which is maximum for
the permitted cost of 0. (c) With a permitted cost of 0, the residual graph has no augmenting path. (d) An augmenting path exists (bold edges) in the
residual graph after increasing permitted cost to 1. (e) The augmented flow (bold edges) has value 3 and cost 1, incurred on (dashed) edge ðr2; r2Þ
indicating r2 matches no superstring. (f) The flow of cost 0 corresponds to a pair of superstrings, at least one of which matches each read. Dashes “-”
indicate positions not constrained by the reads matching the given superstring. The flow of cost 1 corresponds to a single superstring matching three
of the reads.

Minimum-Cost Flow
Input: A directed graph G ¼ ðV ; EÞ, a pair of designated
vertices s; t 2 V , a capacity function c, a cost function �, and
a target flow value v.
Objective: Find an s� t flow in G respecting capacities c,
with valueðfÞ � v and minimizing costðfÞ.

Finding the k chains with largest union is reduced to
minimum-cost flow as follows: Associate the network G ¼
ðV ;EÞ with poset ðR;�Þ, where V ¼ X [Y [fs; tg. The sets
X ¼ fx1; . . . ; xng and Y ¼ fy1; . . . ; yng correspond to reads
in R. Edges in the network are defined as

E ¼ fðs; xiÞ : 1 � i � ng [fðyi; tÞ : 1 � i � ng
[fðxi; yjÞ : ri � rjg;

and all edges have unit capacity. The costs on each edge of
the form ðxi; yiÞ is set to 1 and all other edge costs are 0.

Examples of graphs constructed in this way from a set of
reads are presented in Fig. 4. Details of network flows and
associated algorithms can be found in several texts (e.g., [7],
[15]), but we briefly sketch the approach of Ford and
Fulkerson [13] for finding a maximum flow. Begin with a
(suboptimal) flow and repeatedly find “augmenting paths”
whose inclusion increases the value of the flow. An
augmenting path can be found by first constructing a
“residual graph” where edges with flow already at capacity
are reversed, and edges with flow below capacity have their
current flow value subtracted from their capacity. An
augmenting path is then a path from s to t in the residual
graph. Once an augmenting path has been found, it can be
added to the flow by increasing or reducing the flow along
each edge in the path. When no augmenting path can be
found, a flow of maximum value has been found. For
rational capacities, this method is easily seen to terminate; if
the augmenting path used at each iteration is selected
carefully, the number of iterations is polynomial.

Note that since all edges inE have unit capacity and costs
in f0; 1g, all possible flow values and costs must be in 0; . . . ; n.
This is a direct corollary of the max-flow min-cut theorem:
The maximum flow value is exactly equal to the minimum
capacity of a cut separating nodes s and t, where the capacity
of a cut is the sum of the capacities of its edges [14].

Correctness of this reduction can be understood through
certain relationships that are further detailed elsewhere [17].
Suppose for a flow of value v throughG the minimum cost is
z. Such a flow is on z edges of type ðxi; yiÞ and v� z edges of
type ðxi; yjÞ, with i 6¼ j. In any maximum flow through G,
regardless of cost, edges of type ðxi; yjÞ form independent
sets. As shown in the proof of Dilworth’s Theorem given by
Ford and Fulkerson [15] (p.62, Lemma 8.1), these indepen-
dent sets define a set of chains. If ðxi; yjÞ is involved in the
flow, then ri and rj are part of the same chain. For any i, if
neither xi nor yi are involved in the flow, then ri is included
in the chain decomposition as a singleton set. These relation-
ships imply that some set of n� v chains in the poset covers
n� z elements. The set R0 � R that solves the MFR-RMA
instance is obtained by simply selecting the reads corre-
sponding to covered elements in the poset, and a set of
superstrings can be formed by laying out the reads contained
in each of the chains.

To solve the MFR-RMA problem for k superstrings,
explicitly construct the poset ðR;�Þ defined in Section 2,

which has Oðn2Þ pairs of comparable elements and can be
constructed naively in OðnNÞ time. Then construct the
graph G as described above, which takes Oðn2Þ time. The
most straight-forward way to solve the minimum cost flow
problem is by iteratively increasing values of a permitted
cost z and finding a maximum flow value for each z (e.g.,
using the augmenting path method sketched above). The
first value of z, for which the optimal flow value is at least
n� k, gives the maximum number of reads that are
consistent with some set of k superstrings.

The original minimum cost flow algorithm of Ford and
Fulkerson has time complexity Oðn4Þ [14]. For general
minimum cost flow problems, there have been many
algorithmic improvements (e.g., [9], [22]). Since for all
practical purposes, N � n2, the overall time complexity is
dominated by the minimum cost flow algorithm.

Theorem 5. The minimum fragment removal RMA problem can
be solved in OðnN þ fðnÞÞ time when reads are not nested,
where n is the number of reads, N is the sum of the lengths of
reads, and fðnÞ is the time complexity for the minimum cost
flow algorithm.

4.2 Minimum Fragment Removal is NP-Hard when
Allowing Nested Reads

Although the MFR-RMA problem is polynomial-time
solvable when restricted to reads of uniform length, we
show here that allowing variable length reads, which, in
general, includes nested reads, renders the problem NP-
complete. Our reduction is from the well-known 3SAT
problem.

3-SATISFIABILITY (3SAT)
Input: Collection C ¼ fc1; . . . ; cmg of clauses on a finite set U
of variables such that jcij ¼ 3 for all i.
Objective: Determine whether a truth assignment exists for
U that satisfies all the clauses in C.

Given a set C of clauses over the variables of U , we
construct in polynomial time a set R of reads over alphabet
�, a position function p and a positive integer k such that C
is satisfiable if and only if some k-set of superstrings is
consistent with all but jUj of the reads.

Letting t ¼ jUj, we show how to construct a target
problem instance with k ¼ tþ 2, with the intuition that a
distinct superstring will correspond to each of the
t variables, with two additional superstrings. This set of
superstrings will be consistent with all but exactly t of the
reads if, and only if, there is a satisfying truth assignment
for the source instance of 3SAT. In case, the source problem
has a satisfying truth assignment, the t reads that will not
be consistent with any superstring will correspond to the
negation of the literals of a satisfying truth assignment. The
additional two superstrings can be thought of as accounting
for the remaining two literals in each clause possibly not
included in the satisfying truth assignment.

We first define the sequence alphabet � consisting of
three subsets:

� ¼ �U [�L [�G:

We call �U the variable letters, �L the literal letters and �G the
garbage-collecting letters. The garbage-collecting letters are

1292 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2011

simply �G ¼ fg1; g2g. The variable letters map bijectively to
the variables of U :

�U ¼ fu1; . . . ; utg:

The literal letters (a superset of the variable letters) consist
of one letter for each literal:

�L ¼ fu1; �u1; . . . ; ut; �utg:

The reads consist of the following four sets:

R ¼ RU [RL [RG [RC:

We refer to RU as the variable reads, RL as the literal reads, RC

as the clause reads, and RG are the garbage-collecting reads. All
variable reads, garbage-collecting reads, and clause reads
have length equal to 1 and all literal reads have length
jCj þ 1.

For each variable, we construct tþ 1 reads in RU , so
jRU j ¼ tðtþ 1Þ. For each variable read r 2 RU; jrj ¼ 1 and
consists of the letter from �U corresponding to the same
variable as r. For each variable read r 2 RU , we set
pðrÞ ¼ ð1; 1Þ. As with the variable reads, the garbage-
collecting reads, which number 2ðtþ 1Þ are each of length 1
and tþ 1 of them consist of the letter g1, while the remaining
tþ 1 consist of the letter g2. For every r 2 RG; pðrÞ ¼ ð1; 1Þ.

The clause reads RC also each consist of a single letter.
For each clause ci, and each literal in ci, we create ðtþ 1Þ
clause reads consisting of the literal letter corresponding to
that literal. For each read r 2 RC , if r corresponds to clause
ci then pðrÞ ¼ ðiþ 1; iþ 1Þ.

The 2t literal reads in RL each have length jCj þ 1, and
begin with a variable letter from �U , followed by jCj literal

letters from �L. For all r 2 RL; pðrÞ ¼ ð1; jCj þ 1Þ. Corre-
sponding to each variable in ui 2 U , the set RL contains a
pair of reads, one corresponding to the positive form of the
ui and the other to the negative form of ui:

uiuiuiui 	 	 	ui and ui�ui�ui�ui 	 	 	 �ui;

respectively. Note that for every variable read ri 2 RU , there
are exactly two literal reads rj; rk 2 RL such that ri is
consistent with each of rj and rk, overlapping each at a
single position, but rj and rk are not consistent with each
other. A diagram to illustrate this transformation can be
seen in Fig. 5.

The following proposition (with proof omitted) follows
directly from the fact that each distinct variable, clause, and
garbage-collecting read appears tþ 1 times.

Proposition 3. Suppose, S is a set of length jCj þ 1 strings and
jSj ¼ tþ 2. If all but t reads from RU [RL [RC [RG are
consistent with S, then all reads from RU;RC and RG are
consistent with S.

Proposition 4. Suppose, a set S of tþ 2 superstrings is
consistent with all but t reads from RU [RL [RC [RG.
Then exactly t reads from RL can be consistent with S, and all
must correspond to distinct variables.

Proof. Clearly, at least t reads from RL must be consistent
with S. Suppose, more than t reads from RL are
consistent with S. Then at most one superstring from S
can be consistent with a garbage-collecting read, violat-
ing Proposition 3. Suppose, exactly t reads from RL are
consistent with S, but two of them correspond to the
same variable. Note that the two literal reads are not

PENG AND SMITH: MULTIPLE SEQUENCE ASSEMBLY FROM READS ALIGNABLE TO A COMMON REFERENCE GENOME 1293

Fig. 5. Example transformation from 3SAT to MFR-RMA. The source problem instance is U ¼ fu1; u2; u3; u4; u5g and C ¼ fu1u2u3;
�u2 �u3 �u4; u3u4u5; �u2u3u4; u2u3 �u4; �u3 �u4 �u5g, six clauses on five variables. Boxed letters represent individual reads. Vertical dots separating identical
reads indicate that those reads are repeated jU j þ 1 times (in this case six times) at the same position.

consistent with each other. Then the two superstrings
consistent with those two reads can be consistent with at
most tþ 1 reads, which correspond to the same variable,
from RU . This requires the remaining reads from RU and
RG, totaling ðtþ 1Þðtþ 1Þ to be consistent with the
remaining t superstrings. But this is a contradiction,
since at most tþ 1 reads from RG [RU can be consistent
with the same superstring. tu

Theorem 6. Minimum fragment removal RMA is NP-hard when
nesting of reads is allowed.

Proof. Suppose, there is a truth assignment to variables of
U that satisfies C. Then construct t superstrings identical
through their entire sequence to the literal reads of RL

corresponding to the literals appearing in the truth
assignment. These t superstrings will be consistent with
every read from RU and at least tþ 1 clause reads for
every clause in C. Form two additional superstrings,
each consistent with one of the garbage-collecting reads,
and any of the clause reads corresponding to literals in
the clauses that are not part of the truth assignment.
This may leave gaps in these final two superstrings,
which can be filled in arbitrarily. The only reads not
consistent with at least one of these superstrings will be
the t literal reads, corresponding to literals not included
in the truth assignment.

Suppose, there is a set S of length jCj þ 1 superstrings
consistent with all but t of the reads. Then, by
Proposition 4, the t reads inconsistent with S must be
literal reads, and those consistent with S correspond to a
valid truth assignment. Let sg1

; sg2
2 S be the super-

strings consistent with reads from RG. Since sg1
and sg2

can be consistent with at most 2ðtþ 1Þ reads from RC

corresponding to each clause, the remaining reads from
RC for each clause must be consistent with one of the
superstrings from S n fsg1

; sg2
g, which are identical in

sequence to the t literal reads consistent with S. The truth
assignment for U corresponding to these literal reads will
then satisfy each clause. tu

We note also that the alphabet can be replaced with a
binary alphabet simply by assigning a number to each letter
of the alphabet used in our reduction, and replacing each
letter in the reads with the binary representation of the
associated number. Just as no two distinct letters from our
alphabet matched each other, no two binary representations
of numbers will match each other in every digit. We can
also further restrict the problem by requiring that each of
the tþ 1 copies of the variable reads, garbage collection
reads, and clause reads be replaced by tþ 1 nonoverlap-
ping, but consecutive copies. Correspondingly, the length of
the literal reads would increase by a factor of tþ 1. Hence
the hardness result holds for a binary alphabet and without
duplicate reads at any position.

5 DISCUSSION

We have described a set of computational problems in
resolving distinct sequences from a heterogenous sample. We
refer to these problems collectively as referenced multiple
assembly problems. In these problems the distinct sequences

are assumed sufficiently similar that all reads sequenced from
the sample can map to a common reference genome. The
reference genome provides knowledge of positions for reads.
These problems emerge in a wide variety of contexts,
including, but not limited to, haplotyping inference for
polyploid species and metagenomic data analysis.

We described an algorithm for the RMA problem that
finds a minimum set of sequences that is consistent with all
reads in OðNÞ time, which is linear in the size of the input
reads and a significant improvement over a previously used
algorithm for the same problem [10]. Although our
algorithm does not consider sequencing errors, we remark
that error rates in sequencing are falling rapidly. For current
applications, the algorithm can be applied following an
error-correction stage as is common in sequence assembly.

We also examined the MFR-RMA problem, which aims
to assemble a set of k sequences that is consistent with the
largest subset of reads. We showed that MFR-RMA can be
solved efficiently by employing an elegant method of
Andras Frank originally designed to find optimal sets of
chains and antichains of posets [17]. The MFR-RMA variant
is particularly suitable when the set of reads may have
contamination, or when the number of sequences to
assemble is known a priori (e.g., haplotype inference for
polyploids of known ploidy). It is likely that improvements
to the time complexity of the MFR-RMA variant can be
obtained by exploiting the special structure of the problem
rather than applying the general reduction to min-cost flow.

We also described two problem variants, MD-RMA and
BD-RMA, that explicitly account for sequencing errors.
While these two problems address the practical issue of
errors in reads, they are easily seen to generalize other
problems already shown to be NP-hard. The intractability
seems to stem generally from allowing mismatches between
the reads and their associated superstrings. We have not
explored approximation algorithms for the problem var-
iants found to be NP-hard. One interesting avenue for
future algorithmic work includes analysis of the parameter-
ized complexity of these problems. These problems may be
tractable if some of their many natural parameters are fixed
(e.g., length of reads, numbers of superstrings, alphabet
size, etc.). For example, in second-generation sequencing
applications the initial mapping stage often restricts the
number of possible errors in the reads, and allow only a
fixed and relatively small number of mismatches between
reads and the reference genome. Another direction for
future research with practical implications will be to
investigate the complexity of these problems for paired-
end reads.

ACKNOWLEGMENTS

The authors would like to thank Michael Waterman and
Vineet Bafna for helpful discussions.

REFERENCES

[1] V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph, “Haplotyping as
Perfect Phylogeny: A Direct Approach,” J. Computational Biology,
vol. 10, nos. 3/4, pp. 323-340, 2003.

[2] V. Bafna, S. Istrail, G. Lancia, and R. Rizzi, “Polynomial and APX-
Hard Cases of the Individual Haplotyping Problem,” Theoretical
Computer Science, vol. 335, no. 1, pp. 109-125, 2005.

1294 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2011

[3] V. Bansal, A.L. Halpern, N. Axelrod, and V. Bafna, “An MCMC
Algorithm for Haplotype Assembly from Whole-Genome Se-
quence Data,” Genome Research, vol. 18, no. 8, pp. 1336-1346, 2008.

[4] L.G. Biesecker et al., “The Clinseq Project: Piloting Large-Scale
Genome Sequencing for Research in Genomic Medicine,” Genome
Research, vol. 19, no. 9, pp. 1665-1674, 2009.

[5] R. Cilibrasi, L. van Iersel, S. Kelk, and J. Tromp, “The Complexity
of the Single Individual SNP Haplotyping Problem,” Algorithmica,
vol. 49, no. 1, pp. 13-36, Sept. 2007.

[6] S.A. Cook and R.A. Reckhow, “Time Bounded Random Access
Machines,” J. Computer and System Sciences, vol. 7, no. 4, pp. 354-
375, 1973.

[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms. MIT Press, 2001.

[8] R.P. Dilworth, “A Decomposition Theorem for Partially Ordered
Sets,” The Annals of Math., vol. 51, no. 1, pp. 161-166, 1950.

[9] J. Edmonds and R.M. Karp, “Theoretical Improvements in
Algorithmic Efficiency for Network Flow Problems,” J. ACM,
vol. 19, no. 2, pp. 248-264, 1972.

[10] N. Eriksson, L. Pachter, Y. Mitsuya, S.-Y. Rhee, C. Wang, B.
Gharizadeh, M. Ronaghi, R.W. Shafer, and N. Beerenwinkel,
“Viral Population Estimation Using Pyrosequencing,” PLoS
Computational Biology, vol. 4, no. 5, p. e1000074, May 2008.

[11] E. Eskin, E. Halperin, and R. Karp, “Efficient Reconstruction of
Haplotype Structure via Perfect Phylogeny,” J. Bioinformatics
Computational Biology, vol. 1, no. 1, pp. 1-20, 2003.

[12] S. Felsner, V. Raghavan, and J. Spinrad, “Recognition Algorithms
for Orders of Small Width and Graphs of Small Dilworth
Number,” Order, vol. 20, no. 4, pp. 351-364, Nov. 2003.

[13] L.R. Ford and D.R. Fulkerson, “Maximal Flow through a
Network,” Canadian J. Math., vol. 8, no. 3, pp. 399-404, 1956.

[14] L.R. Ford and D.R. Fulkerson, “Constructing Maximal Dynamic
Flows from Static Flows,” Operations Research, vol. 6, no. 3, pp. 419-
433, 1958.

[15] L.R. Ford and D.R. Fulkerson, Flows in Networks. Princeton Univ.
Press, 1962.

[16] M. Frances and A. Litman, “On Covering Problems of Codes,”
Theory of Computing Systems, vol. 30, no. 2, pp. 113-119, Mar. 1997.

[17] A. Frank, “On Chain and Antichain Families of a Partially
Ordered Set,” J. Combinatorial Theory, Series B, vol. 29, no. 2,
pp. 176-184, Oct. 1980.

[18] K.A. Frazer et al., “A Second Generation Human Haplotype Map
of over 3.1 Million SNPs,” Nature, vol. 449, no. 7164, pp. 851-861,
2007.

[19] E. Fredkin, “Trie Memory,” Comm. ACM, vol. 3, no. 9, pp. 490-499,
1960.

[20] D.R. Fulkerson, “Note on Dilworth’s Decomposition Theorem for
Partially Ordered Sets,” Proc. Am. Math. Soc., vol. 7, no. 4, pp. 701-
702, Aug. 1956.

[21] C.W. Fuller et al., “The Challenges of Sequencing by Synthesis,”
Nature Biotechnology, vol. 27, no. 11, pp. 1013-1023, 2009.

[22] H.N. Gabow and R.E. Tarjan, “Faster Scaling Algorithms for
Network Problems,” SIAM J. Computing, vol. 18, pp. 1013-1036,
1989.

[23] S.R. Gill, M. Pop, R.T. DeBoy, P.B. Eckburg, P.J. Turnbaugh, B.S.
Samuel, J.I. Gordon, D.A. Relman, C.M. Fraser-Liggett, and K.E.
Nelson, “Metagenomic Analysis of the Human Distal Gut
Microbiome,” Science, vol. 312, no. 5778, pp. 1355-1359, 2006.

[24] C. Green and D. Kleitman, “The Structure of Sperner K-Family,”
J. Combinatorial Theory (A), vol. 20, pp. 80-88, 1976.

[25] C. Greene, “Some Partitions Associated with a Partially Ordered
Set,” J. Combinatorial Theory (A), vol. 20, no. 1, pp. 69-79, 1976.

[26] D. Gusfield, “Haplotyping as Perfect Phylogeny: Conceptual
Framework and Efficient Solutions,” Proc. Sixth Ann. Int’l Conf.
Computational Biology (RECOMB ’02), pp. 166-175, 2002.

[27] M. Jakobsson, S.W. Scholz, P. Scheet, J.R. Gibbs, J.M. VanLiere, H.-
C. Fung, Z.A. Szpiech, J.H. Degnan, K. Wang, R. Guerreiro, J.M.
Bras, J.C. Schymick, D.G. Hernandez, B.J. Traynor, J. Simon-
Sanchez, M. Matarin, A. Britton, J. van de Leemput, I. Rafferty, M.
Bucan, H.M. Cann, J.A. Hardy, N.A. Rosenberg, and A.B.
Singleton, “Genotype, Haplotype and Copy-Number Variation
in Worldwide Human Populations,” Nature, vol. 451, no. 7181,
pp. 998-1003, 2008.

[28] J.Y. Kim, S. Tavaré, and D. Shibata, “Counting Human Somatic
Cell Replications: Methylation Mirrors Endometrial Stem Cell
Divisions,” Proc. Nat’l Academy of Sciences USA, vol. 102, no. 49,
pp. 17739-17744, 2005.

[29] H.R. Kobel and L. Du Pasquier, “Genetics of Polyploid Xenopus,”
Trends in Genetics, vol. 2, pp. 310-315, 1986.

[30] P.W. Laird, “The Power and the Promise of DNA Methylation
Markers,” Nature Rev. Cancer, vol. 3, no. 4, pp. 253-266, 2003.

[31] G. Lancia, V. Bafna, S. Istrail, R. Lippert, and R. Schwartz, “SNPs
Problems, Complexity and Algorithms,” Proc. Ann. European
Symp. Algorithms (ESA), F.M. auf der Heide, ed., pp. 182-193, 2001.

[32] S. Levy, G. Sutton, P.C. Ng, L. Feuk, A.L. Halpern, B.P. Walenz, N.
Axelrod, J. Huang, E.F. Kirkness, G. Denisov, Y. Lin, J.R.
MacDonald, A.W.C. Pang, M. Shago, T.B. Stockwell, A. Tsiamouri,
V. Bafna, V. Bansal, S.A. Kravitz, D.A. Busam, K.Y. Beeson, T.C.
McIntosh, K.A. Remington, J.F. Abril, J. Gill, J. Borman, Y.-H.
Rogers, M.E. Frazier, S.W. Scherer, R.L. Strausberg, and J.C.
Venter, “The Diploid Genome Sequence of an Individual Hu-
man,” PLoS Biology, vol. 5, no. 10, p. e254, Sept. 2007.

[33] L.M. Li, J.H. Kim, and M.S. Waterman, “Haplotype Reconstruc-
tion from SNP Alignment,” J. Computational Biology, vol. 11,
nos. 2/3, pp. 505-516, 2004.

[34] A. Ludwig, N.M. Belfiore, C. Pitra, V. Svirsky, and I. Jenneckens,
“Genome Duplication Events and Functional Reduction of Ploidy
Levels in Sturgeon (Acipenser, Huso and Scaphirhynchus),”
Genetics, vol. 158, no. 3, pp. 1203-1215, 2001.

[35] L.A. Meyers and D.A. Levin, “On the Abundance of Polyploids in
Flowering Plants,” Evolution, vol. 60, no. 6, pp. 1198-1206, 2006.

[36] A. Mortazavi, B.A. Williams, K. McCue, L. Schaeffer, and B. Wold,
“Mapping and Quantifying Mammalian Transcriptomes by RNA-
Seq,” Nature Methods, vol. 5, no. 7, pp. 621-628, 2008.

[37] S. Ohno, Evolution by Gene Duplication. Springer-Verlag, 1970.
[38] P.A. Pevzner, H. Tang, and M.S. Waterman, “An Eulerian Path

Approach to DNA Fragment Assembly,” Proc. Nat’l Academy of
Sciences USA, vol. 98, no. 17, pp. 9748-9753, 2001.

[39] D.E. Schones and K. Zhao, “Genome-Wide Approaches to
Studying Chromatin Modifications,” Nature Rev. Genetics, vol. 9,
no. 3, pp. 179-191, 2008.

[40] D.C. Schwartz and M.S. Waterman, “New Generations: Sequen-
cing Machines and Their Computational Challenges,” J. Computer
Science and Technology, vol. 25, no. 1, pp. 3-9, 2010.

[41] J. Shendure and H. Ji, “Next-Generation DNA Sequencing,”
Nature Biotechnology, vol. 26, no. 10, pp. 1135-1145, Oct. 2008.

[42] D. Shibata and S. Tavaré, “Counting Divisions in a Human
Somatic Cell Tree: How, What and Why,” Cell Cycle, vol. 5, no. 6,
pp. 610-614, 2006.

[43] S.G. Tringe and E.M. Rubin, “Metagenomics: DNA Sequencing of
Environmental Samples,” Nature Rev. Genetics, vol. 6, no. 11,
pp. 805-814, 2005.

[44] S.G. Tringe et al., “Comparative Metagenomics of Microbial
Communities,” Science, vol. 308, no. 5721, pp. 554-557, 2005.

[45] J.A. Udall and J.F. Wendel, “Polyploidy and Crop Improvement,”
Crop Science, vol. 46, no. 1, pp. S3-S14, 2006.

[46] Y. Yatabe, S. Tavaré, and D. Shibata, “Investigating Stem Cells in
Human Colon by Using Methylation Patterns,” Proc. Nat’l
Academy of Sciences USA, vol. 98, no. 19, pp. 10839-10844, 2001.

Qian Peng received the BS degree in computer
science from the Beijing University and the MS in
biomedical engineering from the University of
Tennessee, Memphis, and currently she is work-
ing toward the PhD degree in the Department of
Computer Science and Engineering, University
of California, San Diego. Her research interests
are computational biology and bioinformatics.

Andrew D. Smith received the BA degree in
psychology, the bachelor of computer science
(BCS) degree in 2000, and the PhD degree in
computer science in 2004 from the University of
New Brunswick. He studied computational biol-
ogy and genomics in Cold Spring Harbor
Laboratory until 2008 at which time he moved
to University of Southern California where he is
currently an assistant professor of biological
sciences.

PENG AND SMITH: MULTIPLE SEQUENCE ASSEMBLY FROM READS ALIGNABLE TO A COMMON REFERENCE GENOME 1295

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

