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ABSTRACT

High-throughput protein–RNA interaction data gen-
erated by CLIP-seq has provided an unprecedented
depth of access to the activities of RNA-binding
proteins (RBPs), the key players in co- and post-
transcriptional regulation of gene expression. Motif
discovery forms part of the necessary follow-up data
analysis for CLIP-seq, both to refine the exact loca-
tions of RBP binding sites, and to characterize them.
The specific properties of RBP binding sites, and
the CLIP-seq methods, provide additional informa-
tion not usually present in the classic motif discov-
ery problem: the binding site structure, and cross-
linking induced events in reads. We show that CLIP-
seq data contains clear secondary structure signals,
as well as technology- and RBP-specific cross-link
signals. We introduce Zagros, a motif discovery al-
gorithm specifically designed to leverage this infor-
mation and explore its impact on the quality of recov-
ered motifs. Our results indicate that using both sec-
ondary structure and cross-link modifications can
greatly improve motif discovery on CLIP-seq data.
Further, the motifs we recover provide insight into the
balance between sequence- and structure-specificity
struck by RBP binding.

INTRODUCTION

During the past decade, an increasing amount of attention
has been drawn toward the complex mechanisms of post-
transcriptional regulation of gene expression, heavily driven
by interactions between RNA and RNA-binding proteins
(RBPs) (1–3). It is now clear that post-transcriptional reg-
ulation is a major modulator of phenotype, with important
roles in practically all biological processes, and implications
for many human diseases (4–6). Approaches such as RNA-
compete have uncovered complex relationships between
RBPs and their binding specificities (7), underscoring the

need for a greater understanding of their activities. Despite
substantial progress, much remains to be learned about
post-transcriptional regulation. One of the prime movers
of recent and continuing genome-wide insights is CLIP-seq
(cross-linking with immunoprecipitation followed by high-
throughput sequencing), which allows a high-resolution in-
vestigation of the binding sites for a given RBP. Three vari-
ants of CLIP-seq have been developed: high-throughput se-
quencing CLIP, termed HITS-CLIP (3); Photoactivatable-
ribonucleoside-enhanced CLIP, termed PAR-CLIP (8); and
individual nucleotide resolution CLIP-seq, termed iCLIP
(9). Each of these CLIP-seq variants allows target mR-
NAs to be identified, but importantly the resolution is high
enough to localize binding to within a small window. Be-
yond this, statistical models are needed to exactly local-
ize the binding site. Even with iCLIP, which inherently
gives single-nucleotide resolution for the cross-link loca-
tion, background noise and sequencing artifacts will mean
that not every locus identified by the assay is a bona fide
binding site, nor will the localization always be perfect, as
cross-linking biases are well known (10,11).

In addressing the problem of simultaneous binding site
characterization and localization, much of the analysis
methodology has been borrowed from the field of transcrip-
tion factors, for example from the analysis of sequences
identified in ChIP-seq experiments. Binding sites for RBPs
though are different from transcription factor binding sites:
they tend to be shorter, and have characteristic secondary
structures (12). Most existing motif-discovery methods con-
centrate exclusively on primary sequence, but the shorter
length of RBP binding sites, coupled with the abundance of
highly similar non-binding sites and the proclivity toward
low sequence specificity in some RBPs present difficulties
for such approaches. Despite mounting evidence that RNA
secondary structure plays a role in RBP binding site selec-
tion, few motif discovery tools consider it (13,14).

The CLIP-seq experimental procedure causes sequencing
reads to exhibit characteristic substitutions and deletions
relative to the reference genome at the cross-link location.
We call these substitutions and deletions diagnostic events
(DEs). (8,10,15,16). Although the cross-link location is not
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necessarily within the binding site, it is generally in close
proximity. These properties of CLIP-seq reads have been
employed to localize the cross-linking location (17,18), but
their distribution relative to the binding site has not previ-
ously been exploited for motif-discovery in a probabilistic
model, and tools using them have been restricted to indi-
vidual variants of CLIP-seq.

Here, we describe the Zagros algorithm for simultaneous
motif characterization and binding site localization from
CLIP-seq data that uses a model specifically designed for
CLIP-seq derived RNA binding sites. Our method mod-
els sequence, secondary structure and technology-specific
cross-linking events using a formalization where we treat
the locations of motif occurrences as missing data. Zagros is
the first motif-discovery method that is able to exploit all of
the additional information inherent in CLIP-seq data of any
variety, and we demonstrate that this extra information has
utility in successfully recovering RBP motifs in CLIP-seq
data. Zagros source code licensed under the GNU General
Public License (version 3) is freely available for download
from http://smithlabresearch.org.

Using our method, we show that motifs enriched in
CLIP-seq datasets represent a trade-off between sequence
and structure specificity, suggesting that RBPs with highly
specific sequence motifs require less structural constraints
on their binding sites to achieve their specificity.

MATERIALS AND METHODS

Data sets

To investigate the properties of CLIP-seq, the sequence and
secondary structure preference of a range of RBPs, and to
evaluate our proposed method we collected a set of public
data derived from 20 studies, covering iCLIP (9,10,19–21),
HITS-CLIP (22–32) and PAR-CLIP (8,33–35). This collec-
tion constitutes data profiling 40 RBPs (36 human and 4
mouse). A complete description is provided in supplemen-
tary materials. Sequence data was mapped to hg19 and mm9
using Novoalign (Novocraft, http://www.novocraft.com).
Definitions of genes, exons and UTRs were taken from Ref-
Seq (36).

Defining sets of target 3’UTRs

To investigate the structure preferences of hexamers in RBP
targets, for each CLIP-seq dataset we defined a set of tar-
get 3′ UTRs. To do this, we binned CLIP-seq reads in 1nt
bins (iCLIP) or 20nt bins (PAR-CLIP, HITS-CLIP), and
retained only those bins that could be uniquely assigned to
a single transcript. For each 3′ UTR we found the bin with
the largest number of reads. We then ranked 3′ UTRs by the
count of reads in the bin with the most reads, and selected
the top 1000 3′ UTRs as our target set for each RBP. The
non-target set is simply any 3′ UTR region (as defined by
refseq) that is not contained in the target set.

Calculating secondary structure

In our model we represent secondary structure using
base pairing probabilities (for more detail, see supplemen-
tary section 2.6.3). For an RNA sequence, we calculate

base pairing probabilities using McCaskill’s algorithm (37).
These probabilities are then input either with just the se-
quences, or with both the sequences and the cross-link mod-
ification events, and are considered part of the data. Our
model includes parameters for the base-pair-probability of
each position within the motif; these parameters are learned
from the data using expectation maximization.

Simulated data

Each simulated dataset was produced by randomly selecting
500 segments, each of length 50 bp, from human 3′ UTRs
(RefSeq), and planting within each a motif occurrence from
a randomly generated position weight matrix with an infor-
mation content of approximately 0.5 bits per column. Struc-
ture was imposed by taking a short segment upstream of
the placed motif and planting its reverse complement down-
stream of the motif, forming a hairpin loop. The offset of
diagnostic events from the start of the planted motif was
simulated (once per dataset) as a uniform random variable
on the range −8 to +8. The number of diagnostic events
placed for a motif occurrence, where diagnostic events were
present, was sampled from the empirical distribution ob-
served in the same 50 bp window of the same 3′ UTR in
CLIP-seq datasets. A more detailed description of the simu-
lation procedure is given in supplementary methods. In total
we simulated 2200 datasets. Of these, 1100 have no partic-
ular structure imposed on the motif occurrence, but have a
DE-fraction ranging from 0 (no sequences with diagnostic
events) to 1 (all sequences having diagnostic events), with a
step of 0.1 and 100 simulations for each level. The remain-
ing 1100 have no diagnostic events, but a structure-fraction
ranging from 0 (no sequences have motif occurrences with
any particular structure imposed on them) to 1 (the motif
occurrence in every sequence is forced to adopt a ssRNA
conformation), with a step size of 0.1 and 100 simulations
for each level.

Recovered PWMs were compared to the simulated PWM
by calculating the Kullback–Leibler divergence of the re-
covered PWM from the simulated one. We estimated a false
discovery threshold for KLD by randomly shuffling the re-
covered and simulated motifs, and considered a recovered
motif to match the simulated motif if P < 0.05.

CLIP-seq derived data

To evaluate the performance of Zagros on recovering previ-
ously reported RBP binding motifs from CLIP-seq data, we
defined a set of CLIP-seq target sequences for each dataset.
As with the simulated data, these sequences were each 50bp
in length, and we selected 500 sequences per datasets. To
select these sequences, we binned CLIP-seq reads for each
dataset into 50 bp bins, and selected the top 500 bins with
the greatest number of CLIP reads.

Sequence vs. structure specificity

We ran zagros using both structure and diagnostic events.
We used a motif length of 6 for all datasets to avoid any bi-
ases in counting oligomer occurrences that would be intro-
duced by varying lengths. We retained only those datasets
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where the recovered motif contained a match to the previ-
ously reported consensus. Base-pair probabilities for each
recovered motif are the average across all positions in the
motif.

RESULTS AND DISCUSSION

CLIP-seq data encodes RBP-specific sequence and structure
signals

Prior to developing our model, we sought to investigate the
interaction of sequence and secondary structure in RBP tar-
gets identified from CLIP-seq data. Since structure is inher-
ently a property of sequence, our purpose here was to deter-
mine to what extent the local sequence of the binding site
directly informs its structure. If structure can trivially be in-
ferred from the sequence of the motif, then explicitly mod-
eling it is unlikely to be beneficial in motif-discovery. Con-
versely, if the interaction between sequence and structure in
CLIP-seq targets is identifiably different from non-targets,
then leveraging this may improve motif-discovery.

Earlier work has shown that matches to a known con-
sensus sequences for an RBP in target genes derived from
RIP-Chip show different RNA structure to those in non-
target genes (13). We extended this by determining the struc-
tural bias of all hexamers in CLIP-seq target sets, while re-
maining agnostic of what the RBP binding motif was. To
do this, we selected a set of target 3′ UTRs for each RBP,
and counted the number of times each hexamer occurred in
the target set in single- or double-stranded conformation,
and also for non-targets. We computed an odds-ratio for all
hexamers: the odds of the hexamer being single-stranded
in target 3′ UTRs (target structure) against the odds of it
being single-stranded in non-target 3′ UTRs (background
structure). In each dataset, for each hexamer/ratio, we cal-
culated a P-value using Fisher’s exact test, where our null
hypothesis is that the odds-ratio does not significantly de-
viate from 1. Figure 1A shows the results for three ex-
ample RBPs, HuR, IGF2BP1, and TIAL1, with hexam-
ers that show the most strongly significant deviation from
their background structure being close matches to previ-
ously reported sequence motifs for these proteins (8,20,38–
40). To determine whether this trend was present in a range
of CLIP-seq datasets, we calculated P-values in this fashion
for all hexamers across all CLIP-seq datasets. From these,
we determined the frequency of P-values (Figure 1B). As a
control, we also did this using randomly selected 3’ UTRs.
We noted an enrichment of significant P-values when using
CLIP-derived target 3′ UTRs which was not present with
randomly selected 3′ UTRs, suggesting that targets identi-
fied by CLIP-seq are enriched for structural motifs, as well
as sequence motifs.

CLIP-seq diagnostic events follow RBP- and technology-
specific patterns

CLIP-seq has several stages, from UV irradiation to high-
throughput sequencing of the short isolated RNA seg-
ments. Of the three CLIP-seq variants, only iCLIP was
designed to have single-nucleotide resolution, achieved
through read truncation at the cross-link location (9). Still,
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Figure 1. Sequence elements in CLIP-derived target sets show structural
preferences not trivially determined by sequence. (A) Log odds-ratios are
the odds of an occurrence of a particular hexamer being single-stranded
in the 3′ UTR of target genes for the indicated RBP versus non-target
genes. Significance (P-values, y-axis) is determined using Fisher’s exact
test. The most significant hexamers are highlighted for each RBP, and show
a close match to reported consensus binding preferences. Data for HuR,
IGF2BP1, and TIAL1 from (16), (8) and (20) respectively. (B) Each P-
value is derived by testing the odds-ratio of a particular hexamer in a par-
ticular CLIP dataset, as in panel A (for all datasets, and all hexamers). For
each CLIP-seq dataset, we calculated the frequency of P-values in discrete
bins of width 0.01, and plotted these. Red points correspond to 3′ UTRs of
genes determined to be targets in each CLIP-seq dataset, blue points were
computed in the same way using randomly selected 3′ UTR sequences, and
do not show an enrichment for significant associations between sequence
and structure. Lines were fit using LOESS regression.

single-nucleotide resolution has been achieved in PAR-
CLIP and HITS-CLIP by exploiting characteristic dele-
tions and mutations caused by cross-linking (17,18). The re-
verse transcriptase used in HITS-CLIP sometimes skips the
crosslinked RNA nucleotide bound to the protein residue,
resulting in a nucleotide deletion, while in PAR-CLIP, 4sU
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labeled transcripts sometimes induce T → C conversions in
the sequencing step, identifiable as mismatches to the ref-
erence genome when mapping. We refer to these deletions,
mutations and truncations collectively as ‘diagnostic events’
(DEs). The relative prevalence of each type of event varies
by technology (see Figure 2A).

HITS-CLIP and iCLIP have similar mapping rates, how-
ever only 8–20% of the mapped reads in HITS-CLIP have
a deletion at the cross-link site, whereas for iCLIP around
99% of mapped reads appear to have been truncated at
the cross-link site. More specifically, in 99% of the reads,
we did not find any deletions, which can either mean that
reverse-transcriptase has read through the cross-link loca-
tion with no deletion or it has been halted at the cross-link
location. Only in the latter case the read in fact contains
the diagnostic event. Sugimoto et al. (10) estimated that
82% of the reads are truncated at the cross-link location,
but for simplicity, Zagros considers all of the reads with-
out deletions to have a diagnostic event at the truncation
site. For more information on diagnostic events on iCLIP
data refer to supplementary information, Section 2.9. PAR-
CLIP has a higher percentage of reads containing diagnos-
tic events than HITS-CLIP, but suffers lower mapping rates
than HITS-CLIP and iCLIP. Since DEs for iCLIP are iden-
tified as the 5′ mapping location, in the absence of a dele-
tion, each read can have at most one DE. For HITS-CLIP
and PAR-CLIP, it is possible that sequencing errors or even
multiple actual cross-links could lead to multiple poten-
tial DEs per sequence. Fortunately for our analyses, usually
only one DE can be found (Figure 2B). To investigate the
distribution of diagnostic events around binding sites, we
searched for occurrences of simple consensus sequences, de-
fined from literature (see supplementary materials), around
CLIP sites identified for each RBP in our data. We observed
that diagnostic events are often enriched at a particular dis-
tance from the consensus match, and follow a characteris-
tic distribution. We noted that distance from the start of the
consensus match to the most likely position of a diagnostic
event is specific to the RBP (Figure 2C). Efforts to model
CLIP-seq diagnostic events must account for the variability
imparted by RBP and technology.

A probabilistic model of sequence, structure and diagnostic
events

Our model of sequence and structure builds upon the widely
used classic mixture model introduced by Lawrence and
Reilley (41) with many notable extensions (42). Let S be
a set of n sequences such that each member Si ∈ S has
the same length m. Define the set X = {X1, . . . , Xn} of
motif occurrence indicators in correspondence with S so
that Xij = 1 exactly when a motif occurrence starts at po-
sition j in Si. We use the “zero-or-one occurrence per se-
quence” assumption (ZOOPS), so ‖Xi‖1 ∈ {0, 1}, as used
in the well-known MEME program (43). We augment this
data with secondary structure indicators T = {T1, . . . , Tn},
with Tij indicating that position j of Si has a paired struc-
tural state, which implicitly assumes a single underlying
secondary structure for each sequence. In explaining our
model, we assume a fixed motif width w and use the nota-
tion Si {Xi } to denote the w consecutive positions of Si begin-

ning at the unique position j such that Xij = 1; if ‖Xi‖1 = 0,
then Si {Xi } is empty. We also define Si {Xi } as the concatenated
positions of Si not in Si {Xi }.

We augment the usual motif model M = (Mk)wk=1 and
background model f to account for secondary structure: f
and the Mk are multinomial distributions over {A, C, G,
U} × {paired, unpaired}, as explained in detail in supple-
mentary methods. Then

Pr(S, T, X|M, f ) = ∏n
i=1 Pr(Si , Ti , Xi |M, f )

= Pr(X|M, f, O) Pr(O|M, f ) ×
∏n

i=1 Pr(Si {Xi }, T{Xi }|M, X, Oi ) ×
Pr(Si {Xi }, Ti {Xi }| f, X, Oi ),

where Oi = 1 if sequence i contains a motif occurrence and 0
otherwise. When dealing only with sequence and structure,
the prior Pr(X|M, f, O) is uniform, and can be disregarded.
For any sequence s having structural indicators t,

Pr(s, t|M) = ∏w
k=1 Mk(sk, tk)

and

Pr(s, t| f ) = ∏|s|
k=1 f (sk, tk).

Next we make an additional augmentation to the model to
account for cross-linking. We assume each sequence con-
tains one cross-link location. We estimate the probabilities
of where the cross linking is located using diagnostic events
as follows:

Pr(Ci = l|Oi = 1, D) = Di j + ε∑m
j ′=1 Di j ′ + ε

,

where Dij is the count of diagnostic events at location j in
sequence i (we treat D as a fixed model parameter), Ci is the
location of the cross-link in sequence i, and ε is a pseudo-
count to avoid zero-counts.

We bring information about diagnostic events in via the
prior on motif occurrences, Pr(X|M, f, O, D, g), where g
= {g1, g2} models the distance between cross-link site and
motif occurrences, as

Pr(X|O, D, g) =
n∏

i=1

m−w+1∏

j=1

Pr(Xi j = 1|Oi = 1, D, g)Xi j ,

where

Pr(Xi j = 1|Oi = 1, D, g) =
m∑

l=1

Pr(Ci = l|Oi = 1, D) ×

[
g1(1 − g1)|l−( j+g2)|]K

.

Note that Pr(X|M, f, O, D, g) = Pr(X|O, D, g), since the
prior has no dependence on the sequence/structure param-
eters of the model. We decided to model the relationship be-
tween diagnostic events and binding site positions using a
geometric distribution, where g = {g1, g2} has probability g1
and location parameter g2 to indicate the typical offset be-
tween the cross-link site and the start of the binding site. The
reason for using a geometric distribution is primarily based
on observing what seems to be an exponential decay in the
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Figure 2. Properties of diagnostic events in CLIP-seq data. (A) Percent of reads mapped, and mapped reads with diagnostic events for HITS-CLIP, PAR-
CLIP and iCLIP (�In iCLIP all the reads without deletion, are assumed to be truncated at cross- link location.). (B) Number of diagnostic events within
reads that contain at least one event. Most of the reads have exactly one diagnostic events. (C) Density of diagnostic events relative to occurrences of an
expected consensus sequence in the top 1000 CLIP-identified target sequences for HuR, hnRNP H1, MBNL1 and TDP43; data from (21,23,25,34).

density of diagnostic events moving away from what we be-
lieve to be true binding sites in many of the higher quality
data sets. This also makes sense conceptually in iCLIP, since
the rate parameter can be viewed as the probability that the
truncation will mistakenly occur one base too soon or too
late.

Our exploration of CLIP-seq data highlighted the fact
that cross-linking is often quite noisy. To balance the impact
of CLIP-seq cross-link events against sequence and struc-
ture information, we include the parameter K – a tuning
parameter that modulates the impact of diagnostic events
on the algorithm. Low values (near 0) reduce the impact
of diagnostic events, while higher values increase it. For all
results reported here, we fixed this at 1.1 (see supplemen-
tary for details on selection of this), which is the default in
our implementation. This is a somewhat conservative value,
but users can increase this if they feel their data is of higher
quality and as the CLIP-seq assay continues to improve.

Our goal in characterizing binding specificity from the
data is to find estimates for the model parameters M and
f. The traditional formulation, without secondary structure
indicators or diagnostic event locations, treats the sites X as
missing data, and uses a method like EM or Gibbs Sam-
pling. Our model has two important properties that facili-
tate using an EM algorithm to estimate the model parame-
ters:

� We assume the values of the structure indicators T are
not dependent on the model parameters. We also have
a method to compute expected values for T: we can use
the partition function algorithm due to McCaskill (37),
as explained in supplementary methods. Hence, in using
EM to estimate M and f, we need only recompute expec-
tations for the values of X at each iteration, while T re-
mains static. We also remark here that in theory we could
re-estimate values for T using a restricted partition func-
tion algorithm (44), but doing so would be computation-
ally prohibitive.

� The contribution of diagnostic events, given the motif lo-
cations is independent of the sequences S and secondary

structure indicators T, as well as the model parameters
M and f. This makes it easy to decompose the estimation
procedure into steps involving S and T and other steps
involving D. This has intuitive appeal: if every observed
diagnostic event corresponded to a functional binding
event, and if every functional binding event resulted in
a diagnostic event, then we should be able to estimate the
binding site indicators X using data from D alone, only
involving the parameters g.

Use of RNA secondary structure and diagnostic events im-
proves motif-discovery in simulated data

To examine the extent to which our expanded model im-
proves motif recovery, we produced a set of simulated
datasets. For each simulation we generated a random po-
sition weight matrix of length six, and used this to plant
occurrences into 500 sequences of length 50nt, that were
randomly selected from human 3′ UTRs. For equal pro-
portions of the datasets, we fixed the secondary structure
of the occurrence to be single-stranded in 100% of the oc-
currences, 90% of the occurrences and so on down to 0%
of the occurrences (we call this the structure-fraction of the
dataset). We also simulated diagnostic events with distance
geometrically distributed around some offset from the mo-
tif occurrence. This offset is fixed for each dataset, but varies
uniformly at random in all dataset on the range ± 8nt. Sim-
ilar to the structure, for equal proportions of the datasets,
we planted these diagnostic events for 100% of the motif oc-
currences, 90% of the occurrences and so on down to 0% of
the occurrences (we call this the DE-fraction of the dataset).
Further details of the simulation process are given in ‘Ma-
terials and Methods’ section.

For each simulated dataset we ran Zagros in four differ-
ent ways: with just the simulated sequences; with the se-
quences and base-pair probabilities (RNA secondary struc-
ture); with the sequences and diagnostic event locations;
and with the sequences, structure, and diagnostic events.
Although Zagros can be run in these four different modes,
when we refer simply to Zagros, we mean the version us-
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Figure 3. Use of RNA structure and diagnostic events improves motif-discovery performance on simulated data and outperforms other methods. (A)
Proportion of recovered motifs as a function of the fraction of planted motif occurrences that are forced to adopt a specific RNA secondary structure (in
this case, ssRNA). Zagros was run with either just sequence data, or both the sequences and the structure (base-pair probabilities). For each fraction of
occurrences with planted motifs, we simulated 500 random datasets. Error-bars are 95% confidence interval from 1000 bootstrap samples. (B) As in panel
(A), but as a function of the fraction of planted motif occurrences that have one or more diagnostic events. Zagros was run either with just sequence data,
or sequence and diagnostic events data. (C) Comparison with other methods.

ing all three of sequence, structure and DEs. In each case,
we determined whether the motif recovered by Zagros was
a match to the planted one (see ‘Materials and Methods’
section for details), and calculated the fraction of datasets
for which each method was able to recover the planted mo-
tif. As the fraction of motif occurrences with fixed struc-
ture increases, the ability of Zagros to recover the motif if
structural information is provided also increases, while it re-
mains stationary if only sequence information is provided
(see Figure 3A). Similar, although less dramatic, improve-
ments in performance are observed as the fraction of motif
occurrences with diagnostic events increases (Figure 3B). It
is possible to increase the impact of diagnostic events by in-
creasing the value of the parameter K. Although this results
in stronger performance on simulated data, we elected not
to do this as it has an adverse impact on the algorithm’s
performance with CLIP-seq derived data, which has higher
levels of more heterogeneous cross-link noise.

Figure 3C shows the accuracy of Zagros (using sequence,
structure and diagnostic events) compared to three well-
known motif discovery tools (MEME, DME and MD-
SCAN). We ran all of these methods on the same simulated
datasets described above. As shown in Figure 3C, using the
extra information of structure and diagnostic events allows
Zagros to clearly achieve the best performance of the meth-
ods tested. The stark contrast is due to the low information
content of the motif, making discovery by sequence alone
highly challenging. The bars show the fraction of motifs re-
covered by each program; error bars indicate the standard
deviation.

Zagros recovers previously validated motifs from CLIP-seq
data

We compared the performance of Zagros to DME, MD-
SCAN and MEME on a set of datasets derived from a range

of CLIP-seq experiments comprised of multiple replicates.
We selected a subset of 19 RBPs from this data for which a
sequence preference had previously been reported (exclud-
ing miRNA-associated RBPs, such as Ago2; list of selected
datasets and details of sequence selection provided in sup-
plementary materials). We report results for those replicates
where at least one of the tested methods was able to re-
cover the expected motif. When one of the algorithms de-
signed for transcription factor binding sites finds the reverse
compliment of a motif, we count that as a success, since
they could easily be modified to be strand specific. Figure
4 shows twelve example datasets and the top-scoring motif
recovered for each dataset; the previously described binding
site for each is also shown. Note that in all the examples, the
match to the previously described site is obtained by Zagros
using all three of sequence, structure and diagnostic events.

Although the other tested programs sometimes recover
the expected motif, Zagros achieves the most consistent re-
covery. In some cases, it is clear that just the addition of
structure is sufficient, such as with HuR. In other cases,
such as for the IGF2BP proteins and hnRNPC, Zagros
achieves a close match to the expected motif only through
the use of both structure and diagnostic events. In general,
the combination of both extra pieces of information gives
the best result. Logos for all tested datasets are provided in
Supplementary Figures S1–S5.

Zagros uncovers a potential link between sequence- and
structure-specificity in RBP binding sites

We applied Zagros to investigate the relationship between
structure and sequence specificity of RBP binding. We de-
termined the sequence specificity of the motif reported by
Zagros as the frequency with which the consensus sequence
from the motif occurred in either human or mouse exons,
depending on the organism for which the CLIP experiment
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Figure 4. Use of RNA structure and diagnostic events improves recovery of expected motifs from CLIP-seq data Top-scoring motifs recovered by Zagros
on twelve example CLIP-seq datasets. For each dataset we show the motif recovered by DME, MDSCAN and MEME in addition to each version of
Zagros. The data shown in this figure is obtained from: A, B, C, D, E (8) – F (9) – G (35) – H (21) – I, J (20) – K (29) – L (22).

was conducted. Consensus sequences that occur more fre-
quently are considered to have low-specificity, while those
that occurred relatively rarely we considered to have high-
specificity. We then ordered RBPs by their mean specificity
and plotted the mean base-pair probabilities recovered by
Zagros for each (Figure 5). There was a negative correla-
tion (Spearman’s correlation coefficient: −0.36) between se-
quence specificity and mean base-pair probability. In their
seminal work, Schneider et al. (45) found that binding sites
tend to contain enough information for them to be recog-

nized, but not more than is required. RBP binding sites
tend to be short and degenerate, leading to generally low
sequence-based information. It is reasonable to assume then
that other features, such as secondary structure, contribute
the necessary information to overcome the deficit and allow
the sites to be recognized. Importantly though, the work of
Schneider et al. indicates that (owing to random drift), the
additional information contributed will not be more than is
required for recognition. Our results are supportive of this
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Figure 5. Use of RNA structure and diagnostic events reveals a potential
link between sequence- and structure-specificity in RBP binding sites The
average base-pair probability of the recovered motifs for RRM-containing
RBPs. The x-axis is sorted by the average specificity of the sequence com-
ponent of the recovered motifs; those motifs with high sequence specificity
(i.e. for which matches to the sequence component of their recovered motif
are rare) on the left, and those with low specificity (i.e. for which matches
to their sequence are common) are on the right.

position, as we observe that motifs with more informative
sequence are less structured, and vice versa.

CONCLUSION

Motif discovery in CLIP-seq data is a challenging problem
due to the relatively short length of RBP binding motifs, po-
tentially low levels of sequence specificity, and biases in the
CLIP-seq protocol. However, there are opportunities to im-
prove performance by leveraging attributes specific to RBP
binding and CLIP-seq data.

We have demonstrated here that 3′ UTRs identified as
targets by CLIP-seq contain distinct structural signals that
are not trivially dependent upon sequence, providing addi-
tional high-throughput evidence that structure plays a role
in defining RBP binding sites. We also showed that cross-
linking induced diagnostic events follow RBP-specific pat-
terns and are enriched around motif occurrences.

Our proposed model brings together the sequence and
structure of RBP binding sites, and augments this with tech-
nical information from the CLIP-seq assay (cross-linking
induced events, or diagnostic events). Our model, when

fit using the expectation maximization algorithm, showed
much improved performance in simulated datasets with
structural specificity and informative diagnostic events.
Moreover, we demonstrated that this approach recovers
meaningful motifs from CLIP-seq datasets.

Finally, our finding of a correlation between the
sequence-specificity of motifs recovered for RRM-
containing RBPs (as measured by the frequency that the
consensus occurs in exonic sequences) and the strength
of mean base-pair probability for the motif support the
hypothesis that sequence and structure function in concert
to achieve RBP binding specificity.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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