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ABSTRACT
Motivation: Identification of single motifs and motif pairs
that can be used to predict transcription factor localization
in ChIP-chip data, and gene expression in tissue-specific
microarray data.
Results: We describe methodology to identify de novo
individual and interacting pairs of binding site motifs from
ChIP-chip data, using an algorithm that integrates localization
data directly into the motif discovery process. We combine
matrix-enumeration based motif discovery with multivariate
regression to evaluate candidate motifs and identify motif inter-
actions. When applied to the HNF localization data in liver
and pancreatic islets, our methods produce motifs that are
either novel or improved known motifs. All motif pairs iden-
tified to predict localization are further evaluated according
to how well they predict expression in liver and islets and
according to how conserved are the relative positions of their
occurrences. We find that interaction models of HNF1 and
CDP motifs provide excellent prediction of both HNF1 local-
ization and gene expression in liver. Our results demonstrate
that ChIP-chip data can be used to identify interacting binding
site motifs.
Availability: Motif discovery programs and analysis tools are
available on request from the authors.
Contact: asmith@cshl.edu

1 INTRODUCTION
The identification of regulatory signals in genomes, and spe-
cifically the discovery of transcription factor and cofactor
binding sites, is among the greatest immediate challenges
in genome science. Computational discovery of transcription
factor binding sites usually proceeds by examination of a set of
sequences believed to be bound by the same factor to identify
common patterns, either in the form of consensus or posi-
tion weight matrices. Since many transcription factors bind
specifically to sequence elements with particular properties,
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common patterns represent hypothetical transcription factor
binding site motifs that can be tested at the bench.

High-throughput experimental techniques, including micro-
array expression and ChIP-chip, can be used to identify
sequences that are likely to contain binding sites for the same
or similar sets of factors. Analysis of expression data assumes
that coexpressed genes are often direct targets of common
factors, and that a rough estimate for the location of main
factor binding regions can be made (e.g. the proximal pro-
moter). ChIP-chip experiments measure in vivo localization
of a particular factor on a known sequence, identifying cross-
linking ratios for the factor with putative regulatory regions
in chromatin DNA (Ren and Dynlacht, 2004). Factor local-
ization is strongly correlated with binding (direct or indirect)
and is usually taken as a measure of binding affinity. Since
ChIP-chip data are directly correlated with binding and iden-
tities of localized sequences are known, ChIP-chip data may
be better suited for binding site identification than expression
data. To make best use of localization data, we incorporate
localization data directly into the motif-discovery process, as
opposed to using it to select a sequence set or evaluate motifs
that have already been discovered.

Regression-based methods maximize the use of available
information and have been widely used to correlate pre-
dicted motif occurrences with expression data (Greil et al.,
2003). Wasserman and Fickett (1998) used regression to eas-
ily incorporate multiple factors, cooperation rules and spacing
constraints in muscle promoters [the same method was applied
to liver by Krivan and Wasserman (2001)]. Bussemaker et al.
(2001) fit motif counts linearly to the log of the expression
ratio to identify regulatory elements. Conlon et al. (2003)
extended the method, using motif scores and a greedy heur-
istic, to identify sets of interacting motifs through stepwise
regression. Still, the exact quantitative relationship between
sequence elements and expression data is not known, and a
single quantitative formulation may not exist, especially when
multiple interacting motifs are considered. To overcome this
problem, Das et al. (2004) introduced MARSMotif which uses
multivariate adaptive regression splines (MARS) (Friedman,
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1991; Hastie et al., 2001) to correlate non-linear relation-
ships between multiple motif scores and expression. We use
MARSMotif to identify cooperative motifs, by correlating
motif scores and localization data.

The importance of transcription factor synergy in both reg-
ulating expression and protein–DNA binding is widely recog-
nized. Algorithms that attempt to model such interactions, and
discover interacting motifs include Co-Bind (GuhaThakurta
and Stormo, 2001) and BioProspector (Liu et al., 1995), which
attempt to identify cooccurring motifs, and Gibbs Recursive
Sampler (Thompson et al., 2003), which rewards cooccurring
motifs. Close proximity is often required for the cooperative
interactions of factors (Fickett, 1996), and for the function of
enhanceosomes, which form on segments of DNA with length
approximately 100 bases or less (Carey, 1998). Hannenhalli
and Levy (2002) use colocalization to identify cooperative
factors by examining motifs with occurrences separated by at
most either 50 or 200 bases. Wasserman and Fickett study
cooccurrence of binding motifs for muscle regulatory ele-
ments, and observe that sensitivity and specificity are highest
when cooccurrences are localized within 100 bases.

We identify motif pairs with cooccurrences within 200-base
regions that are significantly correlated with factor localiz-
ation. In order to discover motif candidates that correlate
with factor localization, we use an enumerative algorithm
called DME-X. DME-X incorporates localization data with
sequence data to identify binding site motifs represented as
position-weight matrices. DME-X extends the enumerative
algorithm DME (Smith et al., 2005), which identifies motifs
that are overrepresented in a foreground set relative to a
background set. We identify single and cooccurring motifs
using DME-X, and evaluate candidate motifs and candidate
interacting motifs using regression.

We applied our method to the localization data from ChIP-
chip experiments of Odom et al. (2004). We evaluated motifs
identified by DME-X, as well as previously characterized
binding site motifs from TRANSFAC (Matys et al., 2003).
We show that all but one of the top motifs identified by
DME-X are highly similar to top motifs from TRANSFAC
[using Kullback–Leibler divergence (Kullback and Leibler,
1951)], and most provide a better prediction of localiza-
tion. For comparison purposes, we also evaluated candidate
motifs identified by MDModule (Conlon et al., 2003) and
show that DME-X and TRANSFAC motifs display stronger
correlation to HNF localization than MDModule motifs. To
identify interacting pairs among top scoring individual motifs,
we evaluated pairs of motifs according to conservation of the
relative positions of their occurrences, and the correlation of
their cooccurrences with HNF localization. To identify motifs
whose occurrences colocalize, we searched the sequence
neighborhood of occurrences of top motifs.

We evaluated the correlation between motif occurrences and
gene expression using the microarray expression data of Su
et al. (2004). Our results support and extend the findings

of Krivan and Wasserman (2001), demonstrating that HNF
localization correlates with expression in liver and that cooc-
currences of HNF, C/EBP and Sp1 motifs can be used to
improve localization-based expression predictions in islets
and liver. We use the microarray expression data of Su et al.
(2004) to identify motif pairs that correlate with HNF localiza-
tion and have stronger correlation with expression than HNF
localization.

2 METHODS
To identify binding site motifs we use a strategy of generating
candidates using sequence and localization data, determin-
ing how well the candidates can predict the localization data
(alone or in pairs), and focusing the search once more on
sequence regions near high scoring candidates to identify
additional, possibly more subtle motifs that colocalize with
a high scoring candidate. We test motif modules that cor-
relate well with factor localization to determine increased
correlation with expression.

2.1 The high level procedure
Our method examines a set of sequences F = {S1, . . . , Sm},
and makes use of a set of localization values Y = {y1, . . . , ym}
where yi is the localization value associated with sequence
Si . Given a set B = {b1, . . . , bm} of experimental localization
values (which may be p-values or localization ratios), where
bi is the experimental localization associated with sequence
Si , we define yi = log(θ/bi) with significance threshold θ

commonly set to 10−3 for experimental localization p-values,
or yi = log(bi/θ) with significance threshold θ commonly
set to 2.0 for experimental localization ratios. The high level
procedure for identifying motifs is composed of the following
stages.

Obtain a set of candidates. Applying DME-X to the
sequence set F and the localization values Y , we obtain the set
C1 of candidate motifs. In general, C1 can be supplemented
with any set of motifs, and we included previously character-
ized motifs from TRANSFAC (Matys et al., 2003) and motifs
identified by MDModule (Conlon et al., 2003).

Filter candidates based on predictive ability. Each motif
from C1 is evaluated using regression to determine how well it
predicts localization. The result is the set C2 of top individual
predictors.

Recursively search sequence neighborhood. For mem-
bers of C2, the sequence neighborhood of the top occurrences
in each sequence is given a more focused search to identify
colocalizing binding sites of interacting factors. This search
permits the detection of weaker motifs, whose interaction with
dominant motifs from C2 makes them more likely to coloc-
alize. For each motif from C2, the set of motifs identified by
this neighborhood search forms a set C3.

Identify interacting pairs of motifs. Candidates from C2

and their corresponding C3 set are further evaluated for their
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ability to make these predictions in pairs using MARSMotif
and relative positional preference (see Section 2.6 for defini-
tion). Within each of C2 and the C3 sets, all pairs of motifs are
considered. Finally, motif pairs that predict the localization
data well and show a significant relative positional prefer-
ence are evaluated to determine if their cooccurrence predicts
expression better than knowledge of HNF localization alone.

2.2 The DME-X algorithm
The DME algorithm (Smith et al., 2005) uses an enumerative
strategy to discover matrix-based motifs that are overrepres-
ented in a set of foreground sequences relative to a set of
background sequences. DME identifies motifs with relative
overrepresentation between two sets of sequences, searches
a space constrained by information content of the motifs
[information content is a measure of the specificity of a
motif (Stormo, 2000)], and includes a new local search pro-
cedure to replace the conventional local search method of
optimizing motifs using EM (Buhler and Tompa, 2002; Eskin,
2004; Pevzner and Sze, 2000) that does not apply when
relative overrepresentation is the objective.

DME-X generalizes DME by eliminating the strict require-
ment for foreground–background sequence classification.
DME-X incorporates a weight for each sequence: rather than
rewarding and penalizing motifs for occurring in the fore-
ground and background, DME-X rewards for occurrences in
proportion to the localization-based weight assigned to the
sequence containing the occurrence. The greater the weight
on a sequence, the more a motif is rewarded for occurring
in that sequence. We note that the algorithm allows arbitrary
weights to be associated with the sequences, a feature that
makes this algorithm of use in other contexts, such as the
analysis of sequences with expression data.

Formally, the set Y of localization values is transformed
into a set V of weights, where weight vi is derived from yi .
Throughout we used two weighting schemes, both used each
time DME-X is run with results combined. Neither scheme
is superior, as each performs better on some datasets. In
both schemes we scale the negative weights by α so that∑m

i=1 vi = 0. This is needed because most values from Y are
negative, and we want to avoid identifying matrices purely
because they have few occurrences in sequences with neg-
ative weights. In the first scheme, if yi > 0, then vi = yi ,
otherwise vi = αyi , and in the second scheme, if yi > 0, then
vi = 1, otherwise vi = −α. For each Si ∈ F , let Sij denote
the j -th width-w substring of Si . For any motif M [treated
as the set of parameters of a product multinomial model (Liu
et al., 1995)], the score for M with respect to F is

score(M , F , Y ) =
∑
Si∈F

yi

|Si |−w+1∑
j=1

zij log

(
Pr(Sij |M)

Pr(Sij |f )

)
,

where zij = 1 if and only if log Pr(Sij |M) > 0, f is a mul-
tinomial describing the base composition of F and |Si | is the

length of Si . The objective of DME-X is to find a motif M

maximizing score(M , F , Y ).

2.3 Using regression to select motifs
Each member of the set C1 of candidate motifs is evaluated
for ability to predict localization data. Given a motif M ∈ C1,
define the set of predictor variables X = {x1, . . . , xm} such
that xi is the max score value for M in Si , where substring
score is the log-likelihood ratio of the substring being an
occurrence of M ∈ C1 versus base composition. Using a lin-
ear model (D. Das and M. Zhang, submitted for publication)
with a ‘don’t care’ cutoff ξ , the set of predictor variables X is
fit to the set of localization values Y . The form of the model,
with cutoff for the low scores, is

ŷi = a · max(xi , ξ) + b,

where Ŷ = {ŷ1, . . . , ŷm} is the set of predicted binding values.
The fit is measured using reduction in variance (RIV) or the
corresponding percentage reduction in variance (% RIV). RIV
is calculated as

RIV = 1 −
(

m∑
i=1

(�i − �̄)2

) /(
m∑

i=1

(yi − ȳ)2

)
,

where �i = yi − ŷi , and ȳ and �̄ are the corresponding means.
We optimize for ξ , and find max RIV in O(m log m) time.

Localization values in the HNF ChIP-chip data are concen-
trated about the mean. To fit predictor variables to a subset of
the data that would amplify the contributions of extreme val-
ues, while still considering contributions from values around
the mean, we perform regression on randomized sets construc-
ted using a biased promoter-selection scheme. In this scheme,
sequence sets are constructed by including (1) r promoters
localized with the factor (i.e. those with a localization value
above 0), (2) r promoters most probably not to be localized
with the factor and (3) 2r of the remaining promoters, chosen
uniformly at random. The experiment was repeated 20 times,
and motif quality was determined using the average rank over
the 20 experiments. The top k motifs are produced as the top
individual predictors and also as the set C2 of candidates to
check for interactions.

2.4 Neighborhood search to identify interactions
A more focused search is performed in the neighborhood of
each motif from C2. For each such motif, the top occurrence
(with ties broken arbitrarily) is identified in each sequence
with a positive localization score. A new set of sequences is
constructed consisting of (at most) 100 bases on either side
of each top occurrence. We apply DME-X to this new smal-
ler set of shorter sequences. The large reduction in the size
of this set, relative to the original set of sequences, enables
consideration of motifs with lower information content that
would have been rejected due to high false positive detection
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in the full sequence set. We conjecture that this computa-
tional phenomenon mirrors conditions in the nucleus, where
the binding of factors with high specificity helps recruit inter-
acting factors with lower specificity. The motifs identified
during this neighborhood search form the set C3 of candidates
motifs that colocalize with a motif from C2.

2.5 Identifying interactions
The set C2 of motifs selected for individual predictive ability
and each of the sets C3 of motifs resulting from neighborhood
searches are examined for interactions using MARSMotif
(Das et al., 2004). MARSMotif uses MARS (Friedman, 1991;
Hastie et al., 2001) to detect second and third order inter-
actions between motif scores and factor localization values.
MARS is a non-parametric and adaptive regression method
that builds a set of models using stepwise forward selection
and backward elimination in terms of linear splines and their
products. From among the set of models, the one with the
smallest generalized cross-validation score (GCV) is selec-
ted. GCV is the residual sum of squares multiplied by a
factor to penalize for model complexity, and is a general-
ization of leave-one-out cross-validation. Let f be a model
that predicts binding based on the scores for the set of motifs
M = {M1, . . . , Mk} in F . Define Xi = {xi1, . . . , xik} as
the set of scores for motifs of M in sequence Si , and let
X = {X1, . . . , Xm}. Then the GCV for f with respect to the
predictor variables X and the observed localization variables
Y is defined as

GCV(f , X, Y ) =
∑m

i=1(yi − f (Xi))
2

(1 − T (f )/m)2
,

where T (f ) is the effective number of parameters for the
model f , obtained by cross validation (Hastie et al., 2001;
Das et al., 2004). Statistical significance for RIV of models
obtained using MARS is determined using an F -test (Das
et al., 2004).

2.6 Relative positional preference
To further discriminate true interacting motif pairs, we
identify pairs with an unusual relative positional preference
(RPP). RPP is defined as a distance range [d, d ′] between
the left most positions of the best occurrences of two motifs.
Given a set of m sequences of length n, the RPP p-value is
the probability that the left most positions of M1 and M2 of
widths w1 ≤ w2 are within [d, d ′] distance of each other in
at least k of the m sequences (Fig. 1). Assuming that the left
most positions of M1 and M2 are taken uniformly at random
from the set of permissible positions in the sequence Si , the
probability that these positions are within [d, d ′] distance of
one another is the ratio of the number of position pairs that are
within [d , d ′] distance and the number of permissible position
pairs. This probability p(n, w1, w2, d, d ′) is a discretized spe-
cial case of the r-scan statistics of Karlin and Brendel (1992)

d’

d

k

M1 M2

w1 w2

n

m

Fig. 1. M1 and M2 are within [d, d ′] distance in k of the m sequences.

and is computed as

p(n, w1, w2, d, d ′)

= v + ∑n−w2−d+1
i=n−w2−d ′+1 i

(n − w2 + 1)(w2 − w1) + ∑n−w2+1
i=1 i

= 2v + (d ′ − d + 1)
(
2(n − w2 + 1) − d ′ − d

)
(n − w2 + 1)(n + w2 − 2w1 + 2)

,

where v = min(w2 − w1, d) · (d ′ − d + 1) + ∑w2 − w1 − d
i=1

max(d ′ − d + 1 − i, 0), given that n > (d ′ + w2). When
M1 is known to be at the center of each sequence and
n > 2(w2 + d ′), as in Sections 2.4 and 3.4, the probability
calculation is simplified and p(n, w1, w2, d, d ′) = 2(d ′ − d +
1)/(n − w2 + 1).

The probability of identifying k of m sequences with RPP
[d, d ′] follows a binomial distribution, and the RPP p-value is

Pr(X(m, n, w1, w2, d, d ′) ≥ k)

= 1 − ∑k−1
i=0

(
m
i

)
p(n, w1, w2, d, d ′)i

× (1 − p(n, w1, w2, d, d ′))(m−i).

Given a significance threshold α, we say that M1 and M2 have
RPP [d, d ′] if Pr(X(m, n, w1, w2, d, d ′) ≥ k) < α.

3 RESULTS
We verify that HNF localization can be used to predict expres-
sion in islets and liver, and demonstrate that occurrences
of motif pairs studied by Krivan and Wasserman (2001)
are better predictors of expression than HNF localization.
We identify single motifs and motif pairs that predict HNF
localization and expression in islets and liver.

3.1 Correlating binding and expression
Guided by established biological knowledge (Ktistaki and
Talianidis, 1997; Tronche et al., 1997), Krivan and Wasserman
(2001) observed that the presence of motif modules composed
of HNF1, HNF3, HNF4, C/EBP and Sp1 can be used to pre-
dict expression in liver. They selected 16 genes that are known
to be expressed in adult liver and demonstrated that the cor-
responding promoters contained occurrences of binding sites
for these factors. Odom et al. (2004) studied the relationship
between HNF1, HNF4 and HNF6 localization and RNA Poly-
merase II (PolII) localization in islets and liver. They showed

i406



“bti1043” — 2005/6/10 — page 407 — #5

Transcription factor and cofactor binding sites

Table 1. Correlation between localization of HNF1, HNF4 and HNF6, and expression of corresponding genes in liver and islets

Factor Islets Liver
PFG TFG TP T PFG/TFG TP/T P PFG TFG TP T PFG/TFG TP/T P

HNF1 30 79 3544 9836 0.38 0.36 0.400 90 174 2670 9836 0.52 0.27 5.9e−12
HNF4 529 1136 3544 9836 0.47 0.36 5.9e−14 496 1250 2670 9836 0.40 0.27 4.0e−13
HNF6 80 161 3544 9836 0.50 0.36 2.6e−04 80 180 2670 9836 0.44 0.27 4.8e−07
PolII 952 1915 3544 9836 0.49 0.36 0 897 2364 2670 9836 0.38 0.27 0

PFG (Positive foreground) = Number of promoters bound by factor with corresponding gene expressed in tissue. TFG (Total foreground) = Number of promoters bound by factor
and examined by Su et al. (2004). TP (Total positive) = Number of promoters corresponding to genes expressed in tissue. T (Total) = Number of examined promoters. P = p-value
for PFG, TFG, TP and T.

that the vast majority of promoters localized with HNF4 are
also localized with PolII and just under half of the promoters
localized with PolII are also localized with at least one of the
HNF factors.

We examine the relationship between localization of HNF
factors and expression of the corresponding genes in liver
and islets using the ChIP-chip data of Odom et al. (2004)
and expression data of Su et al. (2004). We refer to the six
ChIP-chip experiments of Odom et al. (2004) as HNF1-Liver,
HNF1-Islets, HNF4-Liver, etc.

We tested for correlation between HNF localization and
expression, and found that in all cases except HNF1-Islets,
genes with promoters exhibiting HNF1, HNF4 or HNF6
localization are significantly more likely to be expressed in
the corresponding tissue. To determine statistical signific-
ance, we use a binomial distribution [p-value is calculated
as

∑m
j>=k

(
m
j

)
pj (1 − p)m−j ], where the expression probab-

ility p is equal to the ratio between the number of promoters
with expressed genes and the number of tested promoters, m

is the number of localized promoters of genes with known
expression levels, and k, the number of localized promoters
of expressed genes. We used a significance threshold of 0.001
(Table 1).

To determine whether motif cooccurrences for factor pairs
in HNF1, HNF3, HNF4, HNF6, C/EBP and Sp1 [which were
used by Krivan and Wasserman (2001)] are better expres-
sion predictors than localization of HNF factors alone, we
again use a binomial distribution test. We assume that genes
with localized promoters are equally likely to be expressed,
setting p to be the ratio between localized promoters with
expressed genes and localized promoters of genes tested by
Su et al. (2004). Selecting individual motif-score thresholds
to minimize p-value, m is the number of promoters with
motif cooccurrences scoring above threshold and k is number
of expressed genes whose promoters include motif cooccur-
rences scoring above threshold. We say that a motif pair has
improved prediction of expression if cooccurrences of the
motifs in localized promoters lead to a better prediction of
expression than localization alone (binomial distribution as
described above; threshold of 0.01). We used TRANSFAC
matrices M00132, M00411, M00639, M00770, M00724 and

Table 2. For each ChIP experiment, whether a pair of factors (that includes
the immunoprecipitated factor) better predicts expression in liver and islets
than the localization of that factor alone

Factor TF2 CE Islets CE Liver

HNF1 HNF4 0.036 0.001
HNF6 0.037 0.077
C/EBP 0.071 0.017
HNF3 0.062 0.009
Sp1 0.008 0.006

HNF4 HNF1 0.001 0.001
HNF6 0.001 0.006
C/EBP 0.003 0.002
HNF3 0.001 0.002
Sp1 0.019 0.054

HNF6 HNF1 0.123 0.012
HNF4 0.007 0.038
C/EBP 0.123 0.026
HNF3 0.123 0.083
Sp1 0.123 0.008

Correlation with expression (CE) is quantified by a p-value as calculated using a binomial
distribution (described in Section 3.1).

M00931 as binding site models for HNF1, HNF4, HNF6,
C/EBP, HNF3 and Sp1, and the results are presented in Table 2.

3.2 Individual binding site motifs
We compared RIV of the top TRANSFAC, DME-X and
MDModule motifs, for each ChIP-chip experiment (Table 3).
Top DME-X motifs consistently resemble the top TRANS-
FAC motifs, whereas occurrences of motifs produced by
MDModule display weaker correlation to the localization of
HNF1, HNF6 and HNF4 in islets. Occurrences of TRANS-
FAC HNF4 and HNF6 motifs, while correlating well with
HNF4 and HNF6 localization, have weaker correlation than
occurrences of motifs associated with GABP and Clox motifs.
This may be due to aspects of our method (e.g. method of scor-
ing occurrences) or poor characterizations of binding sites for
those factors, but it may also be an indication that HNF4 and
HNF6 localization is greatly influenced by cofactor binding.

For HNF1-Liver and HNF1-Islets, the TRANSFAC motif
with highest RIV is a known binding site motif for HNF1.
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Table 3. TRANSFAC, DME-X and MDModule motifs with greatest RIV. For DME-X and MDModule motifs we give the name of the closest matching
TRANSFAC motif, by divergence

Experiment TRANSFAC motif %RIV TF DME-X motif %RIV TF MDModule motif %RIV TF

HNF1-Islets 28 HNF1 28 HNF1 6 TBP

HNF1-Liver 16 HNF1 15 HNF1 1 FOXP

HNF4-Islets 16 Elk-1 20 GABP 12 AP2

HNF4-Liver 7 E2F1 8 GABP 8 AP2

HNF6-Islets 18 CDP 23 Clox 5 CDP

HNF6-Liver 19 Clox 28 Clox 4 CDP

Divergences for DME-X motifs range from 0.16 for Clox in HNF6-liver to 0.68 for HNF1 in HNF1-liver. Divergences for MDModule motifs range from 1.22 for TBP in HNF1-Islet
to 1.48 for CDP in HNF6-Islet.

The DME-X motifs with highest RIV have RIV similar to
that of the TRANSFAC HNF1 binding site motif and strongly
resemble this motif. The MDModule motifs for HNF1-Liver
and HNF1-Islets have smaller RIV, and although AT-rich,
show no resemblance to known HNF1 binding site motifs.

It is not surprising that the motif correlating best with HNF1
localization (for liver and islets) is a known HNF1 motif from
TRANSFAC. HNF1 is well studied, binds with high sequence
specificity and its motif is well characterized. The top DME-
X motifs and the two TRANSFAC HNF1 motifs, M00132
and M00790 have a similar pattern. Odom et al. (2004) used
a contingency table test to show that M00790 occurrences
have high correlation with HNF1 localization. We found that
the 16-position wide M00132 motif has a higher RIV than
the 19-position wide M00790 motif, in both liver and islets.
We tested the effect of removing the additional three posi-
tions from M00790, and found the resulting motif to have
greater RIV than M00790 in both liver and islets (Islets: 25
versus 21% RIV; Liver: 16 versus 15% RIV). We conjecture
that M00790 includes unnecessary columns that reduce its
predictive ability, and suspect that many TRANSFAC motifs
have a similar problem.

For HNF4-Islets, the TRANSFAC and DME-X motifs
showed much greater RIV with HNF4 localization than
MDModule motifs. The top TRANSFAC motif is associated
with Elk-1, and the top DME-X motif strongly resembles
a motif associated with GABP. Both GABP and Elk-1 are
ETS-class factors, and the shorter GABP motif appears to
be contained in the longer Elk-1 motif. Motifs identified by
DME-X and MDModule in HNF4-Liver were nearly identical
to those identified in HNF4-Islets (8% RIV for both); the top
TRANSFAC motif (7% RIV) is associated with E2F1.

Of the three HNF factors, HNF4 occupies the largest num-
ber of promoters, binding 1378 and 1521 promoters in islets
and liver, respectively, compared with 103 to 211 promoters
bound by HNF1 and HNF6. Since we associate a larger

number of targets with larger functional complexity, we con-
jecture a greater importance of cofactors for HNF4 binding
than for binding of HNF1 and HNF6. Possible cofactors for
HNF4 identified by our analysis include Elk1, GABP, E2F1
and AP2, each having predicted sites that correlate with HNF4
binding.

The top TRANSFAC motifs in HNF6-Islets and HNF6-
Liver correspond to the CDP and Clox factors, which are splice
variants of the mClox gene (Andres et al., 1994). CDP and
Clox, like HNF6, are homeo-domain factors and are known
to repress transcription in liver by displacing HNF1 binding
(Antes et al., 2000). The top DME-X motifs also resemble a
known Clox motif containing the palindromic ATCGAT pat-
tern, and the top DME-X motif interestingly has much higher
RIV in HNF6-Liver. Since the ends of the Clox and CDP
motifs appear degenerate, we tested their predictive ability
with the ends removed (a similar test is described above for
the TRANSFAC M00790 HNF1 motif). Removing the first
and last positions of the CDP motif M00104 increased % RIV
for HNF6-Islets to 20%; removing the first and last two pos-
itions of the Clox motif M00103 increased the % RIV for
HNF6-Liver to 22%.

3.3 Interactions among top motifs
For each experiment, motifs from the set C2 of candidate
motifs deemed good predictors of binding were examined by
MARSMotif, and the results are presented in Table 4. Results
are not presented for HNF1-Islets or HNF1-Liver because no
significant interactions were identified.

Three pairs of interacting motifs were identified for each
of HNF4-Islets and HNF4-liver. For HNF4-Islets, the first
interacting pair consists of DME-X motifs, including a motif
similar to a TRANSFAC matrix for Elk1, and one with no
strong similarity to TRANSFAC motifs that may be novel.
The second interacting pair includes TRANSFAC motifs
associated with E2F1 and StuAp, which have binding domain
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Table 4. For each ChIP-chip experiment, pairs of motifs that were identified by MARSMotif as statistically significant (p < 10−3), and have a statistically
significant (p < 10−4) RPP

Experiment Name Logo Match Name Logo Match RPP CE

HNF4-Islets DME-X ELK1 DME-X — 3–61 0.022

HNF4-Islets M00940 E2F1 M00263 StuAp 1–96 0.174

HNF4-Islets MDModule AP2 M00263 StuAp 13–80 0.191

HNF4-Liver M00189 AP2 M00716 ZF5 13–65 0.062

HNF4-Liver M00189 AP2 MDModule Sp1 39–203 0.144

HNF4-Liver M00411 HNF4 DME-X STAF 88–131 0.009

HNF6-Islets M00104 CDP M00025 Elk-1 171–174 0.030

HNF6-Islets M00104 CDP M00639 HNF6 1–132 0.122

HNF6-Liver M00104 CDP M00639 HNF6 1–60 0.017

RPP is defined in Section 2.6 and correlation with expression (CE) is defined in Section 3.1. Motifs accessions are specified for TRANSFAC motifs, but no accessions are available
for novel motifs identified by MDModule and DME-X.

homology to HNF3α. The same StuAp motif was found
to interact with a CG-rich motif, identified by MDModule,
that resembles a TRANSFAC motif for AP2. For HNF4-
Liver, we found interactions between a binding motif for
AP2 and both a motif for ZF5 and an MDModule motif
that resembles Sp1 (CG-rich). Interactions between AP2 and
Sp1 have been observed through an immunoprecipitation
experiment (Xu et al., 2002), and the factors are known to
interactively regulate basal promoter activity in liver (Uchida
et al., 2002). We also identified an interaction which is a sig-
nificant predictor of expression, between an HNF4 motif and
a motif identified by DME-X resembling a TRANSFAC motif
associated with Staf.

For both HNF6-Liver and HNF6-Islets we detected an inter-
action between motifs for HNF6 and CDP, and in HNF6-Islets
we detected an interaction between motifs for CDP and Elk-1.
Interaction between Elk-1 and C/EBPβ (known to be active in
liver) has been demonstrated (Hanlon et al., 2000), and Elk-1
has been identified as a regulator in liver and pancreas (we are
not aware of previous studies showing interaction between
these factors).

3.4 Interactions identified in motif neighborhoods
For each experiment, and each motif from the set C2, a neigh-
borhood search was performed producing sets C3 of motifs
that colocalize with a motif from C2. All pairs from a C3

set with a significant RIV and a significant relative positional
preference are presented in Table 5.

For HNF1-Islets, we identified three interacting pairs that
include a motif resembling the HNF1 motif (including the
HNF1 motif itself). One of these interactions also included

a motif associated with C/EBP, and another included a motif
resembling the known binding motif for NF-κB. Both C/EBP
and NF-κB are known to interact with HNF1 (Wu et al.,
1994; Krivan and Wasserman, 2001; Raymondjean et al.,
1991; Figueiredo and Brownlee, 1995). For HNF1-Liver,
we identified two interactions, one of which is between
motifs associated with HNF1 and CDP. CDP is known to dis-
place HNF1 binding (Antes et al., 2000), and the interaction
between the HNF1 and CDP motifs is one of two that we have
identified to improve prediction of expression.

For HNF4-Islets, we found evidence for interactions
between motifs produced by DME-X and MDModule. One of
the DME-X motifs has a strong resemblance to a TRANSFAC
motif associated with GABP [known functional in liver (Du
et al., 1998)], and the novel palindromic CG-rich MDModule
motif weakly resembles the CG-rich AP-2 motif. In both inter-
actions, the motifs are sufficiently distinct with divergence
well above our similarity threshold, but their occurrences
often overlap. In HNF4-Liver, we identified interactions
involving TRANSFAC motifs associated with HNF4 and
HNF4α. Most interesting among these are interactions that
involve the HNF4 motif and novel DME-X and MDModule
motifs. The MDModule motif is a CG-rich palindrome whose
cooccurrence with the HNF4α motif improves prediction of
expression.

For HNF6-Islets we identified interactions between motifs
associated with HNF6 and Oct1, and between a motif asso-
ciated with FOXD3 and a DME-X motif resembling the
motif associated with Oct1. For HNF6-Liver we identified
interactions between a TRANSFAC HNF6 motif and two
other TRANSFAC motifs associated with CDP and Oct1.
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Table 5. Pairs with statistically significant RIV (p < 10−3) and RPP (p < 10−4) that were identified by neighborhood search (i.e. motifs from C3)

Experiment Name Logo Match Name Logo Match RPP CE

HNF1-Islets DME-X HNF1 M00999 AIRE 35–84 0.073

HNF1-Islets DME-X HNF1 M00621 C/EBPδ 11–15 0.032

HNF1-Islets M00132 HNF1 DME-X NF-κB 33–37 0.017

HNF1-Islets M00327 Pax3 DME-X — 29–31 0.276

HNF1-Liver M00132 HNF1 M00106 CDP 1–6 3.2e-4

HNF1-Liver M00132 HNF1 DME-X Ik3/Staf 9–15 0.162

HNF4-Islets DME-X GABP DME-X — 1–11 0.101

HNF4-Islets MDModule AP2 DME-X — 8–10 0.282

HNF4-Liver DME-X GABP M00135 Oct1 6–24 0.025

HNF4-Liver DME-X GABP M00770 C/EBP 0–0 0.147

HNF4-Liver M00158 HNF4 MDModule Sp1 12–18 0.091

HNF4-Liver M00764 HNF4 DME-X GABP 11–11 0.062

HNF4-Liver MDModule ETF M00189 AP2 2–16 0.157

HNF4-Liver MDModule ETF M00716 ZF5 1–22 0.039

HNF4-Liver M00411 HNF4α MDModule — 7–7 0.007

HNF4-Liver M00411 HNF4α DME-X — 0–13 0.012

HNF6-Islets M00639 HNF6 M00138 Oct1 4–4 0.122

HNF6-Islets DME-X CCAAT DME-X Oct1 10–13 0.140

HNF6-Islets M00130 FOXD3 DME-X Oct1 0–11 0.010

HNF6-Islets DME-X GATA4 M00096 Pbx1 13–13 0.338

HNF6-Islets DME-X STAT3 MDModule — 8–13 0.172

HNF6-Islets DME-X GABP DME-X — 1–3 0.015

HNF6-Liver M00639 HNF6 M00104 CDP 1–28 0.017

HNF6-Liver M00639 HNF6 M00138 Oct1 4–11 0.060

Although Oct1 is known to interact with HNF1 (Zhou and Yen,
1991; Ishii et al., 2000) we are not aware of any documented
interactions between Oct1 and HNF6.

4 CONCLUSION
We presented a comprehensive method for identifying bind-
ing site motifs and motif pairs from ChIP-chip data that

incorporates several features that are new to ChIP-chip
analysis. Our motif discovery algorithm incorporates factor
localization data directly into motif search. Regression
is used to evaluate how well individual motifs predict
factor localization, and multivariate regression is used
to evaluate localization prediction of interacting motif
pairs. Colocalizing pairs of motifs are identified by
searching the sequence neighborhood of top individual
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motifs, and relative positional preference is evaluated to
measure significant conservation of distance between motif
occurrences.

We applied our method to data from ChIP-chip experiments
of Odom et al. (2004) on HNF factors in liver and pancre-
atic islets. Our results demonstrate that, aside from the novel
motifs, top individual motifs identified by our method have
strong similarity to the best performing known motifs from
TRANSFAC and often provide a better prediction of factor
localization. We showed that this method can also be used to
identify pairwise interactions between top motifs and identify
weaker colocalized motifs. MARSMotif and the relative pos-
itional preference measure can be used to identify motif pairs
with statistically significant colocalization and prediction of
factor localization.

We believe that novel motifs that are similar to previously
characterized motifs, but have better correlation to factor loc-
alization, provide a better characterization of the binding sites.
Known motifs are often derived from a limited number of
experimentally verified binding site sequences and include
positions that do not appear to help predict factor localization.
Deleting flanking positions from known motifs for HNF1,
Clox and CDP improves their ability to predict localization.
Our study underscores the importance of using de novo motif
discovery tools in combination with experimental data and
indicates that using computational methods in large scale ana-
lysis of binding data may provide better characterizations of
binding site motifs.

We extended the work by Krivan and Wasserman (2001),
demonstrating that HNF localization is correlated with expres-
sion and showing that occurrences of motif pairs can be used
to predict expression in liver and islets with greater accur-
acy than HNF localization alone. We identified motif pairs
whose occurrences are correlated with HNF localization and
expression in liver. These pairs include motifs associated with
HNF1 and CDP, as well as novel motifs that pair with motifs
associated with HNF4 and HNF4α. Surprisingly, occurrences
of HNF4 and HNF6 motifs alone are not the best single
motif predictors of HNF4 and HNF6 localization, but occur-
rences of motif pairs that include these motifs are excellent
predictors.

The DME-X motif discovery algorithm rewards motifs for
occurring in sequences according to weights derived from the
localization values for the sequences. We used two weighting
schemes, both performing well in our experiments, and neither
consistently outperforming the other. Further research using a
more diverse set of ChIP-chip experiments will be required to
determine the appropriate functions for incorporating ChIP-
chip localization values into the search process. Finally,
we feel that the ability of DME-X to use arbitrary weights
assigned to sequences will be effective in other contexts, such
as motif discovery from expression data, where experiment-
ally obtained values are associated with the sequences. The
use of this algorithm in each different context will require

additional research to identify appropriate functions to map
the experimental values to sequence weights in DME-X.
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