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Abstract

DNA methylation is implicated in a surprising diversity of regulatory, evolutionary processes and diseases in eukaryotes. The
introduction of whole-genome bisulfite sequencing has enabled the study of DNA methylation at a single-base resolution,
revealing many new aspects of DNA methylation and highlighting the usefulness of methylome data in understanding a
variety of genomic phenomena. As the number of publicly available whole-genome bisulfite sequencing studies reaches
into the hundreds, reliable and convenient tools for comparing and analyzing methylomes become increasingly important.
We present MethPipe, a pipeline for both low and high-level methylome analysis, and MethBase, an accompanying
database of annotated methylomes from the public domain. Together these resources enable researchers to extract
interesting features from methylomes and compare them with those identified in public methylomes in our database.
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Introduction

In eukaryotes, DNA methylation refers to the addition of a

methyl group to the 59 location of cytosines and is closely linked to

transcriptional regulation [1]. Lack of methylation in genomic

regions usually indicates the accessibility of the underlying DNA

sequences to transcription factor binding [2], although recent

results have suggested a more complex relationship [3]. Investi-

gating DNA methylation patterns across the entire genomes is a

key step to understanding its various roles. There are several

techniques to profile DNA methylation, the most comprehensive

being whole-genome bisulfite sequencing (WGBS; [4]), which has

been used to profile methylation levels across entire genomes in a

variety of organisms and cell types [5–7]. Alternatively, reduced

representation bisulfite sequencing (RRBS) preferentially profiles

CpG-rich regions and requires less sequencing [8]. These profiling

methods provide single-based resolution for the full epigenome

unattainable with ChIP-seq and DNase-seq. For example, recent

studies have identified subtle boundary changes in hypo-methyl-

ated regions around promoters during cell differentiation –

discoveries that would not have been possible without single-base

resolution profiling [9,10]. These experiments provide information

for numerous regions of dynamic methylation, believed to related

with promoters, enhancers, insulators and more broadly regions

dense in transcription factor binding sites [11]. Comparative

analysis of the methylomes of different cell types and conditions

reveals functional epigenetic domains with implications in cell

differentiation and disease onset [10,12,13].

The analyses and interpretation of bisulfite sequencing data are

usually performed in a multi-stage, multi-resolution manner.

Extensive efforts have been devoted to mapping reads and

estimating methylation levels at individual cytosine sites [14,15].

Meanwhile, growing interest is shifting towards biologically

meaningful higher-level methylation features, such as hypo-

methylated regions (HMRs; [3,9]), large-scale partially methylated

domains (PMDs; [7,13]), and allele-specific methylated regions

(AMRs; [16,17]). Existing methods to identify these are usually

project specific, with few general tools available for down-stream

analysis tasks.

As the number of publicly available methylomes rises, large-

scale comparative analysis of methylation patterns across multiple

samples calls for well-curated reference methylome databases.

Some databases exist to address the need for accessing bisulfite

sequencing datasets. The NCBI Sequence Read Archive (SRA)

contains raw sequences of most BS-seq data [18]. The

NGSmethDB database [19] and the NCBI Epigenomics Resourc-

es [20] provide pre-computed methylation level results at

individual cytosines, saving both time and computational resources

to download and analyze those raw reads,. However there are not

sufficient effort to address the issue of higher-level methylation

features. This creates a computational barrier for researchers who

seek to use methylation-based features in large projects. Addition-

ally, databases like SRA and NCBI Epigenetic Resources are

designed to accommodate datasets generated from a variety of

techniques, including ChIP-seq, RNA-seq and WGBS. As such,

their annotation lacks metadata (e.g. bisulfite conversion rates) that

are specific to bisulfite sequencing.

MethBase addresses the need for a well-annotated database of

methylome features and summary statistics (http://smithlab.usc.

edu/methbase/). We collected bisulfite sequencing datasets from
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SRA and other primary sources and analyzed each with the

MethPipe pipeline. From there, we integrated detailed meta

information into the UCSC Genome Browser. This provides a

convenient avenue through which researchers may select

methylomes of interest, visualize them in the UCSC Genome

Browser, examine more detailed metadata, and download all

available information for additional analysis. MethPipe is a

standalone pipeline and freely available open source software,

and provides for easy and consistent comparison between

private data and public methylomes. Here we explain several

aspects of these resources. We also explore a set of general

observations that emerge naturally from these resources,

demonstrating their power and usefulness in comparative

analysis, data integration and technical benchmarking of newly

produced methylome datasets.

Results

Types of Data in the Database
Individual records in MethBase, referred to here simply as

methylomes, correspond to biological samples or replicates, as

defined in the original publication of the raw data. When datasets

are defined as different technical replicates, for example different

libraries made from the same sample, they are pooled in MethBase

as one entry. For each methylome, the database provides a variety

of data, such as methylation levels of individual cytosines, hypo-

methylated regions, partially methylated domains, allele-specific

methylated regions, and detailed metadata and summary statistics.

We describe these types of data below, and reserve more technical

discussion of the pipeline used to generate these data in the

Methods section.

Methylation levels. Although individual methyl groups can

either be present or absent on a cytosine, current WGBS data is

not from single cells, and we therefore refer to a methylation

‘‘level’’ for each cytosine, interpreted as the fraction of molecules

in the underlying cell population that have the methyl mark on the

corresponding cytosine. Since bisulfite sequencing gives a readout

for either the presence or absence of a methyl group in each read,

we get an unbiased estimate for the methylation level from the

ratio of methylated reads to all reads covering a given site. The

estimated cytosine methylation level, along with the number of

sequenced reads supporting that estimate, is computed for each

methylome, along with confidence intervals as described by

Hodges et al. [21].

Hypo-methylated regions. Excluding the brief developmen-

tal stages of somatic and germ cell reprogramming [22],

mammalian cells typically have high levels of methylation

throughout the genome. The more interesting features of

mammalian methylomes tend to be those regions lacking

methylation (e.g. Figure 1A). These hypo-methylated regions

(HMRs) have been associated with CpG islands, promoter regions,

and more generally enhancers and insulators [11]. We developed a

highly accurate method for identifying HMRs using a stochastic

segmentation model that accounts for both changes in methylation

levels and variance in read coverage along the genome [9]. An

individual HMR could represent an interval of the genome that

has been protected from methylation, or has been opened up by

the activity of specific DNA binding proteins [3]. Regardless of the

causes, these intervals are strongly associated with regulation of

gene expression, and fluctuations in their boundaries between

methylomes likely indicate context-specific regulatory sites [10]. In

healthy somatic cell methylomes, the organization of methylation

features exhibit strikingly precise boundaries. The precision with

which HMRs can be identified is what separates this kind of

epigenetic information from others, such as H3K4me marks or

DNase hypersensitivity sites, that usually lack precision in

boundaries.

Hyper-methylated regions. In contrast to mammals, the

Arabidopsis genome is devoid of methylation by default, with

increased methylation levels localized to specific regions, such as

intragenic regions and retrotranposons [23]. A similar pattern,

referred to as ‘‘mosaic methylation’’ [24], has been documented in

invertebrates. During early development of mammalian germ

cells, most of the genome is unmethylated, with certain regions

retaining methylation despite global epigenetic reprogramming

[25]. In each of these cases, the key features of interest are hyper-

methylated regions (HyperMR: e.g. Figure 1B), rather than hypo-

methylated regions (HMR). Comparative analysis of multiple

Arabidopsis methylomes suggests that Arabidopsis HyperMRs,

especially those located in intragenic regions, have specific

locations that are consistently unmethylated across different

ecoytpes and cell types (unpublished studies). These HyperMRs

change between different samples in a discrete manner, suggesting

that discrete HyperMRs represent a fundamental regulatory and/

or functional unit of methylation in plants.

Partially methylated domains. One important discovery

from early genome-wide investigation of the methylomes of

immortalized cell lines (e.g. IMR90) was the presence of large

partially methylated domains (PMD), that spans hundreds of

kilobases [7]. Hansen et al. [12] and Berman et al. [13] also

observed such PMDs characteristic of cancer cell lines and

primary cancers (e.g. Figure 1C), and PMDs has recently been

reported in placenta methylomes as well [26]. PMDs have largely

conserved locations across samples, and overlap with nuclear

lamina associated domains (LAD) and late replicating regions [13],

suggesting their involvement in topological organization of

chromosomes. To characterize PMDs we employ a hierarchical

method that locates PMDs at low resolution followed by further

refinement of their boundaries with higher resolution.

Allele-specific methylation. In diploid organisms, the two

alleles may have different methylation levels in certain regions (e.g.

Figure 1D). Those allele-specific methylated regions (AMRs) can

be either parent-of-origin dependent, or associated with allele-

specific sequence variation [16]. The former type of allele-specific

methylation is related to gene imprinting [27]. We recently

developed a novel computational method to identify AMRs using

WGBS data without using genotype to separate reads from

different alleles [17]. This method allows a comprehensive

investigation of allele-specific methylation on a genome-wide

scale. By applying this method to public methylomes in MethBase,

we have enabled the study of tissue-specific and organism-specific

allele-specific methylation.

Visualizing and Obtaining Methylation Data from
MethBase

MethBase currently includes over one hundred methylomes

from well-studied organisms, including human, mouse, chimpan-

zee and arabidopsis (studies: 28, 17, 3 and 8; methylomes: 169, 71,

5 and 32, respectively). These methylomes are organized by

species and further grouped by the project or publication

associated with the data. The processed data in MethBase can

be accessed through a Track Hub that can be easily loaded into

any mirror of the UCSC Genome Browser [28]. Visual

examination of the methylation patterns at specific genes and

genomic loci is an essential part of exploratory data analysis for

investigators using WGBS data. Pre-computed high-level methyl-

ation features, including HMRs, HyperMRs, PMDs and AMRs,

highlight potentially interesting regions (Figure 1). From the

Methylome Database and Analytic Pipeline
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visualization interface, one may access detailed meta data and

summary statistics through the track summary pages (Figure 2).

For more detailed genome-scale analysis, researchers also have the

option to download the methylation data and pre-computed

methylation features through the UCSC Table Browser [29], in

the form of either genomic interval annotations or single-site

methylation levels.

Applications
Visual exploration of methylation patterns at specific

genes and loci. Visual examination of methylation patterns for

specific genes and genomic regions is a valuable research tool, and

can be applied to differentially expressed genes, evolutionarily

conserved elements, or other regions of interest. Using our tools,

users may also identify higher-level methylation features from their

own methylation data, and compare them with public methylomes

in MethBase. Figure 3 shows a genome browser view of the

methylation levels and identified HMRs for a subset of human

WGBS methylomes in MethBase (disease or mutant samples

excluded). The 20 kb genomic interval covers the 59 end of the

DNMT3B gene, a de novo methyltransferase whose absense in mice

is embryonic lethal due to developmental defects [30]. Displayed

below the partial DNMT3B gene model are transcription factor

binding sites (TFBS) identified by the ENCODE project [31].

Among the 26 methylomes displayed below, 9 are from ESCs and

iPSCs, and 6 from blood cells, with the rest of diverse cellular

origin. In each methylome, an HMR overlaps the transcription

start site (TSS) of DNMT3B, but the size of these HMRs and the

positioning of their boundaries exhibit interesting variation. In the

ESC and iPSC methylomes, as well as 5 of the blood methylomes,

this HMR extends downstream of the DNMT3B TSS by roughly

3 kb. In the remaining methylomes the downstream boundary is

Figure 1. Examples of high-level methylation features available in MethBase through the UCSC Genome Browser track hub. (A)
hypo-methylated regions (HMRs); (B) hyper-methylated regions (HyperMRs); (C) partially methylated domains (PMDs), and (D) allele-specific
methylated regions (AMRs).
doi:10.1371/journal.pone.0081148.g001

Methylome Database and Analytic Pipeline
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roughly 1.2 kb downstream of the TSS. The extended portion of

this HMR clearly overlaps a cluster of TFBS, suggesting a

regulatory module functioning in iPSC, ESC and blood cells. At

the other end of this promoter HMR the boundaries seem to form

discrete categories, suggesting several distinct regulatory modules

with precise boundaries. Another HMR appears roughly 10 kb

upstream of the DNMT3B TSS exclusively in the iPSC and ESC

methylomes. Such these observational features in conjunction with

other forms of genome-wide data provide a starting point for

dissecting the architecture of particular regulatory regions.

Comparative analysis of HMRs. Pre-computed methyla-

tion features can be directly downloaded from MethBase, most in

the form of genomic intervals, permitting further analyses and/or

integration with other data. For example, Hodges et al. [10]

studied the differences of HMRs between sperm, embryonic stem

cells and blood cells. This is easily extended to many more cell

types using MethBase. The number and size of HMRs provide a

concise high-level summary of each methylome. Based on the

number and size of promoter HMRs, methylomes of embryonic

stem cells (ESC) cluster together, and the methylomes of induced

pluripotent stem cells (iPSC) form another cluster, with the

methylomes of differentiated cells showing greater variance

(Figure 4A). Interestingly, iPSC methylomes have a slightly larger

number of promoter HMRs than those of ESCs, perhaps

suggesting incomplete induction of pluripotency. Consistent with

the observation by Molaro et al. [9], promoter HMRs in sperm

are much wider and more numerous than in other cell types.

Empirical benchmarks for new WGBS

experiments. Technical characteristics of publicly available

WGBS methylomes vary considerably. Part of this results from the

decisions made by investigators concerning parameters such as

read length and sequencing depth. Additional variation comes

from poor experimental outcomes, reflected in low bisulfite

conversion, or read coverage that is biased towards or away from

CpG-dense regions. This variation raises the question of how to

evaluate the quality of methylomes from WGBS or RRBS

experiments. The large and growing collection of methylomes in

MethBase provides an empirical benchmark for future investiga-

tions. One potentially important feature that varies perhaps

unexpectedly is the relationship between CpG density and

coverage depth in WGBS data. Using the methylation data from

a subset of human WGBS methylomes, we computed the average

coverage at CpG sites and the CpG density in each 1 kb bin

through the human autosomes, which surprisingly shows signifi-

cant correlation in a large number of samples (Figure 4B and

Table S1). The correlation may be either positive or negative, even

for samples from the same study (Table S1). It remains unclear

whether such correlation reflects technical artifacts or any

underlying biological phenomena. However, methylation features

have several well-known relationships with CpG density, and our

confidence in methylation level estimates is a function of depth of

coverage. The unexpected correlation between read coverage and

CpG density may affect our ability to assess the methylation status

of regions with varying CpG density.

Using evolutionary information to study observed

methylation phenomena. DNA methylation patterns are

conserved to varying degrees between species [9,10], and

methylomes in MethBase are mapped between species to facilitate

evolutionary analysis. For example, we compared B cell and

neutrophil methylomes, both of which are available in the two

species [10], and the methylation states of chimpanzee are mapped

to orthologous sites in the human genome (see Methods). Applying

tools from MethPipe, we identified differentially methylated

regions between B cells and neutrophils within human and within

chimpanzee. These differentially methylated regions provide

evolutionary support for several of the typical scenarios of

methylation dynamics (Figure 5). Figure 5A shows the situation

of an existing HMR disappearing in one methylome, or a new

HMR emerging in the other. Figure 5B illustrates a partial change

in methylation level through a genomic interval. In Figure 5C, the

boundaries of an existing HMR shift, resulting in the expansion of

an HMR in one methylome (or shrinkage in the other methylome).

It is also possible that the location of boundaries of a HMR

remains the same, but changes from a sharp transition to a gradual

transition (Figure 5D). The partial methylation reduction and the

boundary property change are subtle methylation changes. As

Figure 2. Example of detail meta data and summary statistics of methylation features.
doi:10.1371/journal.pone.0081148.g002

Methylome Database and Analytic Pipeline
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Figure 3. Visualization of methylation profiles and HMRs from MethBase near example gene DNMT3B.
doi:10.1371/journal.pone.0081148.g003

Figure 4. Comparing biological and technical features of methylome data. (A) Human methylomes are clustered according to the number
and size of promoter HMRs. (B) Correlation between depth of coverage at CpG sites and CpG densities in 1 kb windows for a subset of human
methylomes from MethBase. X-axis indicates the index of methylomes sorted by their correlation coefficients. See Table S1 for p-values and the list of
samples.
doi:10.1371/journal.pone.0081148.g004

Methylome Database and Analytic Pipeline
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with strong sequence conservation, these conserved differential

methylation patterns between human and chimpanzee suggest that

these regions have context-specific functions.

Discussion

MethBase and MethPipe are powerful resources for projects

seeking to characterize additional methylomes or leveraging

existing methylomes in genome-scale studies. MethBase allows

researchers to easily access pre-computed methylome features and

meta-information specific to WGBS experiments. As the number

of methylomes analyzed grows, MethBase facilitates comparative

analysis of methylation patterns across cell types, species and

disease conditions. When new methylomes are produced, these

resources also help define quality control benchmarks. By viewing

MethBase data through the UCSC Genome Browser, subtle and

context-specific changes can be identified in a targeted manner.

The MethPipe pipeline used to create the database is available

as a stand-alone open source software package. This allows

researchers to extend their analysis of high-level methylation

features such as HMRs, HyperMRs, PMDs and AMRs to their

own studies involving new methylomes. Importantly, the features

Figure 5. Evolutionary support for commonly observed types of differential methylation. (A) differential presense of an HMR; (B) partial
difference in methylation level; (C) shifting of HMR boundaries; (D) difference in precision of HMR boundaries. Orange bars: HMRs in human; Blue bars:
HMRs in chimp; Red bars: DMRs between B cells and neutrophils.
doi:10.1371/journal.pone.0081148.g005

Methylome Database and Analytic Pipeline
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identified in new unpublished methylomes can be directly

compared with all previously published data sets in MethBase

without the need to fully re-analyze each. The pipeline is modular,

containing tools both for basic processing of bisulfite sequencing

reads, and for identifying and comparing higher level methylation

features. This allows users to choose which analyses to perform

and to easily integrate their own. The MethPipe tools have been

used in several studies [32–34], and are now extensively validated

and documented.

Our database complements other tools and databases with its

addition of high-level methylation features. By identifying these

features directly from bisulfite sequencing data without reference

to annotated genomic features, we enable unbiased assessment of

the methylation landscape. In addition, these methylation features

can be investigated accurately at single-base resolution. MethPipe

currently calls HMRs, HyperMRs, PMDs and AMRs, but there

are certainly other interesting methylation features that remain to

incorporated. For example, Xie et al. recently reported a distinct

class of genomic regions, called DNA methylation valleys, which

contain early developmental regulatory genes [35]. Depending on

the cell types and resolution, novel categories of higher-level

methylation features may be characterized, and will likely lead to

the development of new analytic methods.

Methods

We created the MethBase database using raw sequenced reads

downloaded from the NCBI SRA and other public repositories of

WGBS datasets. The raw sequence data are processed through the

MethPipe pipeline (http://smithlab.usc.edu/methpipe/), which

includes both published algorithms and newly developed methods.

Here we describe the methodology and rationale for each major

step in the analysis process.

Mapping Bisulfite Sequencing Reads
Bisulfite treatment converts unmethylated cytosines in the

original DNA fragments into uracils, and as a result thymines in

treated, sequenced reads originate from either thymines or

unmethylated cytosines. There are two approaches for mapping

WGBS reads: the three-alphabet approach and the wild card

approach [14]. We used the rmapbs program, one of the wildcard

based mappers [36]. Input reads are filtered by their quality, and

adapter sequences in the 39 end of reads are trimmed before

mapping. Next, uniquely mapped reads with mismatches below a

certain threshold are kept for further analysis. For pair-end reads,

two mates from the same original DNA segment are mapped

simultaneously. The rmapbs-pe program checks the appropriate

configuration of the mate pairs. If the two mates overlap, the

overlapping part of the mate with lower quality is clipped. This

procedure prevents double counting. Users may also use

alternative mappers (see [14] and [15] for reviews). Our pipeline

provides a program that conveniently converts the output of

alternative mappers to the format supported by MethPipe.

Removing Duplicate Reads
Duplicate reads are generated from a single original DNA

fragment, and usually present in large quantities, possibly due to

preferential amplification by PCR (Cokus et al. called them

‘‘clonal reads’’ [6]). If we keep duplicate reads, especially when

those over-amplified DNA fragments have different methylation

state from other DNA molecules, the estimation of methylation

levels is biased toward the over-amplified DNA molecules.

Duplicate reads always map exactly to the same genomic location

(same chromosome, same starting position, same ending position

and same strand). We use the duplicate-remover program to

randomly select one from multiple duplicate reads as the

representative of the original DNA fragment. This correction is

conservative, because reads mapping to the same location may

actually represent distinct DNA fragments, and unbiased, because

those retained reads are chosen randomly. The duplicate-removal

procedure is done on a per-library basis, as any reads from

different libraries are necessarily from distinct molecules. We pool

all reads from multiple sequencing runs of the same biological

library before removing duplicates as described above.

Estimating Methylation Levels
After reads are mapped and filtered, the methcounts program is

used to obtain read coverage and estimate methylation levels at

individual cytosine sites. We count the number of methylated

reads (containing C’s) and the number of unmethylated reads

(containing T’s) at each cytosine site. The methylation level of that

cytosine is estimated with the ratio of methylated to total reads

covering that cytosine. For cytosines within the symmetric CpG

sequence context, reads from the both strands are used to give a

single estimate. Besides methylation levels at individual cytosines,

researchers are also interested in the methylation status in certain

regions, which can be represented with mean methylation level,

proportion of methylated cytosines or mean methylation level

weighted by coverage [37]. These values can be computed for any

single region using the levels program, and the weighted mean

methylation level can be computed for a set of regions (such as

promoters) using roimethstat.

Based on methylation levels and coverage, MethBase also

includes several useful and easily computed summary statistics for

each sample: mean coverage, genome-wide mean methylation

level, number of covered CpG sites and number of covered

cytosines in the reference genome.

Estimating Bisulfite Conversion Rate
Sodium bisulfite converts unmethylated cytosines in DNA

molecules to uracils, which are read out as thymines during

sequencing. However depending on the treatment time and/or

experimental conditions, the conversion may not be complete,

leaving certain unmethylated cytosines as C’s. The bisulfite

conversion rate, defined as the rate at which unmethylated

cytosines in the sample appear as T’s in the sequenced reads, is an

important measure of the quality of a WGBS experiment.

Estimating bisulfite conversion rate requires a priori knowledge

of the methylation status on at least a portion of the cytosines in

the sample. One typical technique is to spike in some DNA that is

known to be unmethylated, such as a Lambda virus, when

preparing sequencing libraries. Alternatively, one may use other

unmethylated cytosines, such as the those in chloroplast DNA of

plants or mitochondrial DNA of humans [32]. We count the

number of converted reads (containing T’s) and the total number

of reads covering those unmethylated cytosines. The ratio of

converted reads to all reads gives the estimates of the bisulfite

conversion rate. The method is implemented in the bsrate

program.

Identifying Hypo-methylated Regions
From the above analysis, we obtain the methylation level and

coverage at individual cytosines along the genome, which are used

to identify higher-level methylation features, such as HMRs (see

above). We employ a two-state HMM-based method to identify

HMRs in mammalian methylomes [9]. This model introduces one

state representing hypo-methylated regions, and another state

representing highly methylated background. Since the estimated

Methylome Database and Analytic Pipeline
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methylation levels suffer large variance due to randomly sampled

molecules (especially at lower coverage), we directly model the

observed read counts with a beta-binomial distribution, for which

we implemented a rapid and numerically stable parameter

estimation method. The HMM is trained using the Baum-Welch

algorithm [38], and posterior decoding identifies HMRs. The

method is implemented in the hmr program. Median HMR size

and the number of HMRs directly result from this computation,

and can provide a quick and useful characterization of a

mammalian methylome.

Identifying Hyper-methylated Regions
HyperMRs are also inferred from the methylation level and

coverage at individual cytosines, with a stochastic segmentation

model similar to the HMR-finding method. Visual examination of

methylation patterns of multiple samples motivated us to model

the methylation status of cytosines in the Arabidopsis genome with

three states: the hypo-methylated state in the background, the

HYPER-methylated state in HyperMRs and the HYPO-methylated

state scattered within HyperMRs. In addition, the length of

genomic regions is modeled with explicit duration HMM

(‘‘variable duration’’ HMM; [39]). Explicit duration distribution

generalizes the implicit geometric duration distribution in HMM,

and is more flexible. Detailed mathematical formulation is given in

supplementary material. The method is implemented in

hmr_plant program.

Identifying Partially Methylated Domains
As explained above, PMDs are large-scale methylation features

found in immortalized cell lines and cancerous cells. We developed

a hierarchical method to identify PMDs. First, the genome is

divided into 1 kb non-overlapping bins (an empirically determined

value that remains user-adjustable). We count the number of

methylated and unmethylated observations (i.e. CpG states in

reads) in each bin. Similar to the HMR-finding method, we use a

two-state HMM model to segment the genome into PMDs and

background regions. This step at low resolution gives the location

of PMDs, while the exact location of their boundaries need further

refinement. Since the boundary between a PMD and a non-PMD

region must reside within the two bins at the end of that PMD and

that non-PMD region, the refinement of PMD boundaries reduces

to detecting a single change-point along the sequence of sites in

those two bins. The single change-point detection problem has

been extensively studied, and we used the binary segmentation

procedure of Sen et al. [40].

Identifying Allele-specific Methylated Regions
To identify allele-specific methylated regions, we use the linkage

information of the methylation status between adjacent cytosines

in a read. The separation of reads into two alleles and the testing of

whether a certain region fits the allele-specific model is carried out

with the statistical method described by Fang et al. [17].

Additionally, a single-site profile for an allele-specific methylation

‘‘score’’ can be computed along the genome by testing for

significance of linkage between methylation status in reads

covering adjacent CpGs. The programs for identifying AMRs

and computing allelic scores are amrfinder and allelicmeth.

Identifying Differentially Methylated Regions
Comparative studies of methylomes usually involves identifying

DMRs between samples from different conditions. MethPipe

includes two different methods to identify DMRs between two

methylomes, each with its applicable situations. The first method

extends that introduced by [10]. Differential methylation scores

are first computed at individual CpG sites, taking into account

observed frequencies of methylation as well as the amount of data

contributing to those frequencies [41]. Next, non-overlapping

parts of HMRs (i.e. the contiguous parts of the symmetric

difference of the two interval sets) are evaluated to ensure they

contain a sufficient number of differentially methylated CpG sites.

This strategy is HMR-centric, and makes sure that the absense of

an HMR in one methylome is not simply due to lack of data. This

is implemented in the program dmr. The second method uses a

three-state HMM to segment the methylome into contiguous sets

of CpGs that are either (i) not differentially methylated, (ii) have an

over-abundance of significantly different CpG sites in one

direction, and (iii) have an over-abundance in the other direction

(details in supplementary material). The second method is sensitive

to DMRs caused by partial methylation variation, and is

implemented in the dmr2 program.

Cross-species Comparison of Methylomes
To facilitate cross-species comparison of methylomes of multiple

species, we converted the methylation data of mouse and

chimpanzee to the corresponding locations in the human genome.

The liftOver tool provided by UCSC Genome Browser http://

genome.ucsc.edu/cgi-bin/hgLiftOver is used to directly convert

the methylation level file at individual cytosines (output from the

program methcounts ) to the human genome. Next we rerun the

hmr and pmd programs on the converted methylation data file.

Since the program amr works on the mapped read file, we directly

liftover the list of AMRs with the liftOver program.

Supporting Information

Figure S1 The effect of coverage on HMR identification
measured using Jaccard’s index.
(TIF)

Table S1 Correlation between depth of coverage and
CpG densities.
(PDF)

File S1 Supplementary information including supple-
mentary methods and results.
(PDF)
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