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ABSTRACT
Motivation: Tissue-specific transcription factor binding sites
give insight into tissue-specific transcription regulation.
Results: We describe a word-counting-based tool for de novo
tissue-specific transcription factor binding site discovery using
expression information in addition to sequence information.
We incorporate tissue-specific gene expression through gene
classification to positive expression and repressed expression.
We present a direct statistical approach to find overrepres-
ented transcription factor binding sites in a foreground pro-
moter sequence set against a background promoter sequence
set. Our approach naturally extends to synergistic transcription
factor binding site search.

We find putative transcription factor binding sites that
are overrepresented in the proximal promoters of liver-
specific genes relative to proximal promoters of liver-
independent genes. Our results indicate that binding sites
for hepatocyte nuclear factors (especially HNF-1 and HNF-4)
and CCAAT/enhancer-binding protein (C/EBPβ) are the most
overrepresented in proximal promoters of liver-specific genes.
Our results suggest that HNF-4 has strong synergistic rela-
tionships with HNF-1, HNF-4 and HNF-3β and with C/EBPβ.
Availability: Programs are available for use over the Web at
http://rulai.cshl.edu/tools/dwe
Contact: ps@cs.pdx.edu; mzhang@cshl.edu
Supplementary information: Data and omitted results are
available at http://rulai.cshl.edu/tools/dwe/supp

INTRODUCTION
One of the main goals of modern genetics is to decipher the
mechanisms of gene expression and regulation. Recent years
have seen the generation of a significant volume of data that
will help to probe expression mechanisms. Microarray tech-
niques and chromatin immunoprecipitation (ChIP) techniques
allow for genome-scale investigation of gene expression and
DNA-binding protein localization. These techniques can be
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used to classify expression by cell environment and transcrip-
tion factor binding.

Completed or nearly completed genome sequences are pub-
licly available for a growing number of vertebrate species
including human, mouse, rat and chicken. Increasingly accur-
ate methods for detecting transcription start sites (TSSs), such
as Davuluri et al. (2001) and Scherf et al. (2000), enable
localization of promoter regions. Coupled together, sequence
information and TSS location can be used to identify prox-
imal promoter sequences. Proximal promoter sequences have
already been well identified for a large number of genes in
human, mouse and rat.

We are interested in methods that combine gene expression
and sequence information for de novo discovery of transcrip-
tion factor binding sites (TFBSs) in proximal promoters of
co-expressed tissue-specific genes. The annotation of prox-
imal promoters for such genes will advance the understanding
of tissue-specific transcription regulation.

We describe a discriminant word counting algorithm, Dis-
criminant Word Enumerator (DWE), which can be used to
discover motifs in promoters of co-regulated genes. We
use DWE to find overrepresented gapped degenerate words
(motifs) in proximal promoters of liver-specific genes taken
from Liver-Specific Promoter Database (LSPD) (Zhang and
Zhang, 2000, http://cgsigma.cshl.org/LSPD) against verteb-
rate promoters from the Eukaryotic Promoter Database (EPD),
release 78 (Perier et al., 1998). We use TSS data from DBTSS
(Suzuki et al., 2002) and sequence data from GenBank to
collect promoter sequences.

Related literature
Classical sequence-based motif discovery algorithms include
CONSENSUS (Hertz et al., 1990), MEME (Bailey and
Elkan, 1995) and the Gibbs sampler (Lawrence et al.,
1993; Liu et al., 1995). Other motif discovery algorithms
that use word-counting methods are reported previously
(Van Helden et al., 1998, 2000; Sinha and Tompa, 2002).
Recent motif search algorithms that use sequence and
microarray data from expression or ChIP analysis include
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REDUCE (Bussemaker et al., 2001), MDscan (Liu et al.,
2002), DMOTIFS (Sinha, 2003) and YMF (Sinha and Tompa,
2000, 2002; Blanchette and Sinha, 2001). REDUCE relates
motif occurrence counts to gene expression ratio; MDscan
iteratively constructs matrix representations of TFBSs that
are overrepresented in the foreground set against a Markov
background model that can be estimated from a background
sequence set; DMOTIFS searches for overrepresented motifs
in a foreground set against a background set while main-
taining a maximum count per sequence; YMF searches for
overrepresented motifs in a foreground set against a third-
order Markov model estimated from a background sequence
set. Beer and Tavazoie (2004) describe a method for predict-
ing expression from TFBSs abundance; this method could be
extended to include motifs found by DWE. We extend recent
work which uses a P -value statistic to search for overrepresen-
ted ungapped motifs of length 7 in Saccharomyces cerevisiae
promoters.

SYSTEMS AND METHODS
We searched for overrepresented motifs in a set of non-
orthologous proximal promoters of genes that are known to
have high expression in liver. We also searched for motifs
in the consensus sequences of these proximal promoters. We
measured the overrepresentation of motifs in these sets against
the set of all vertebrate proximal promoters in EPD78, and
the set of EPD78 vertebrate proximal promoters whose cor-
responding genes are not known to be strongly expressed
in liver. We report the most overrepresented motifs in these
comparisons, and infer the transcription factors most likely to
bind to the corresponding TFBSs.

Statistical evaluation
We use three methods to evaluate the significance of motif
overrepresentation.

P -value. The fixed marginal contingency table P -value
follows the multiple hypergeometric distribution given in
Equation (1) for a review see Agresti (1992). The P -value
for the table is the sum of the probabilities of all tables that
are at least as extreme. In this application we set a P -value
for the overrepresentation of a motif in the foreground set
against the background set, so that Nf and Nb are the potential
occurrences in the foreground and background sets (trials),
and nf , nb are the number of observed occurrences in the
respective sets (successes).
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Z-test. The Z-test (Student, 1908) is represented by the
following Equation (2).
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Log frequency ratio. The log frequency ratio (LFR) is as
follows:

LFR = ln
nf Nb

nbNf

. (3)

From TFBS to transcription factor
We searched through TRANSFAC (Knuppel et al., 1994) for
position frequency matrices (PFMs) that match the motifs
found by DWE and PFMs found by MDscan. Transcrip-
tion factors that are known to bind to the TRANSFAC PFMs
are likely to bind to the matching DWE motifs and MDscan
PFMs. To facilitate the search, we converted consensus-based
motifs into PFMs using the maximum entropy principle of
Jaynes (1957a,b); each IUPAC symbol was converted into a
maximum-entropy column with total count equal to the num-
ber of foreground occurrences nf . For example, M = {A, C}
was converted into [nf /2, nf /2, 0, 0]T and D = {A, G, T} was
converted into [nf /3, 0, nf /3, nf /3]T. We used a χ2 test to
compare discovered-motif PFMs to TRANSFAC PFMs fol-
lowing the methodology proposed by Schones et al. (2004);
PFMs are iid observations from a product multinomial dis-
tribution and were compared column by column, with the
smaller PFM compared at each possible position to a sub-
matrix of the larger PFM and the best match reported. PFMs
were said to match when the normalized probability that
they are occurrences from the same product-multinomial
distribution was better than 0.05.

Dataset and consensus set
We selected LSPD genes that have at least one known ortho-
log, a known TSS, and sequence information covering the
[−299, 100] region relative to the TSS. With the objective
of collecting promoters with known sequence information
covering the [−499, 100] region relative to the TSS, we selec-
ted a longest promoter from each set of orthologs, breaking
ties arbitrarily. The resulting Liver-Specific Promoter Subset
(LSPS) includes 35 promoters with mean length 549. In con-
trast, the vertebrate promoter subset of EPD78 includes 2380
promoters with average length 579, and the promoter subset
of liver expressed genes in EPD78 includes 103 promoters
with average length 558. LSPS includes four promoters that
are subsequences or orthologs of Krivan and Wasserman
(2001) promoters, including RATAADC01, HUMVITDBP,
MMILGF and HUMGLUT201. Promoters of selected LSPD
genes, LSPS, mapping from LSPS to EPD78 and mapping
from promoters of liver expressed genes in EPD78 to LSPS
are provided in the Supplementary information.

We generated a consensus sequence for each ortholog set,
and used those consensus sequences to check for the con-
servation of motifs found in LSPS. To generate a consensus
sequence, we first aligned orthologs using CLUSTALW
(Thompson et al., 1994) with default parameters. We selec-
ted a consensus element for each aligned position according
to the following procedure. Collect the set of nucleotides
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that appear at least twice at this position across the aligned
sequences; if any of the sequences contains a gap at this pos-
ition or if the nucleotide set is empty output a ‘-’, otherwise
output an IUPAC symbol that corresponds to the collected
nucleotide set. To measure conservation, we report the num-
ber of occurrences of each discovered motif and motif pair in
the consensus set.

We searched for overrepresented motifs in the consensus
set against vertebrate promoters in EPD78 (Table 3). To
accommodate for motif discovery programs, which do not
accept degenerate nucleotide input, we modified the consensus
generation procedure to output the majority nucleotide in a
column (and a ‘-’ in case of a tie) instead of a degenerate IUPAC
symbol. The modified consensus sequence set has four seq-
uences that are different from the original. Both consensus
sequence sets are provided in the Supplementary information.

ALGORITHM
Given a motif structure, including motif length, gaps and
maximum number of degenerate positions, we enumerate all
matching motifs using a method similar to that of Waterman
et al. (1984). Each non-degenerate motif is mapped to an
integer by stripping away gaps and converting the resulting
word of length � over alphabet of size 4 into an integer ranging
from 0 to 4�+1−1. Each motif position and integer representa-
tion are recorded, and the operation is repeated for the reverse
complement if so specified. Position information is compiled
for each permitted degenerate word. The representation of
each word and each degenerate word in the foreground is com-
pared with its representation in the background, and the words
with foreground overrepresentation above threshold are repor-
ted. DWE disregards substrings with characters other than the
case insensitive A, C, G, T in the background and foreground
sequence sets.

Thresholds are set for P -values, LFRs and Z-values as
described in the Systems and methods section. Compar-
ison conditions such as self-overlap, counting method and
motif independence are user specified. When self-overlap
is disallowed, the number of potential occurrences (trials)
in each sequence set will be set to the maximum num-
ber of non-overlapping occurrences. The counting method
can be set to word counting or sequence counting. The
former refers to counting occurrences independently of their
distribution across sequences, and the latter refers to count-
ing sequences that contain at least one motif occurrence.
When motif independence is not required, DWE reports all
overrepresented motifs above the specified threshold. Such
reporting may include similar words that have related sets
of occurrences. For example, occurrence sets for degenerate
words CTNTGD and CTVTGD will have a large intersection.
When motif independence is required, we use the χ2-test
suggested by Schones et al. (2004) to suppress the reporting
of lower-quality-dependent words.

Finding synergistic motifs
Given a list of IUPAC motifs and an integer k, DWE will
search for motif k-tuples that occur in the same sequences
and are overrepresented in the foreground. In the case that
overlap is not allowed, the counting procedure is more intric-
ate. When sequence counting is used, the number of trials
(potential number of occurrences for a tuple in a promoter
set) is the number of sequences in that set, and the num-
ber of successes (occurrences of that tuple) is the number
of sequences containing at least one set of non-overlapping
occurrences of each x ∈ Xk . When word counting is used,
the number of trials for a motif k-tuple Xk is given in Equa-
tion (4), where S = {s} is the set of sequences and |s| is the
length of s. We calculate the number of successes for each
tuple using a recursion on k. For k = 2, the number of suc-
cesses for X2 = {x1, x2} over S is

∑
s∈S x

(s)
1 x

(s)
2 − O(X2),

where O(X2) is the number of overlapping occurrences of
x1 and x2, and x(s) is the number of occurrences of x in s.
For k > 2, the number of overlapping occurrences O(Xk) =∑

s∈S O(Xk , s) is given in Equation (5), where L(Xk , s) is
the number of distinct motif k-tuple occurrences that share at
least one position in s. The total running time is in the order
of |S| + k log k O(Xk).
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(5)

EXPERIMENTS
We used DWE and MDscan to find the most overrepresen-
ted motifs in LSPS against EPD. We did not use REDUCE
because it is less suitable for discriminating against a back-
ground set. Our results on synthetic data suggest that YMF
does not perform as well as DWE or MDscan when search-
ing for overrepresented motifs in a foreground set against a
background set.

Performance on synthetic sequence data
The sensitivity of motif finding algorithms depends on the total
size of the sequence set, motif width and motif degeneracy. We
tested the algorithms on synthetic data with dimensions sim-
ilar to those of LSPS. Foreground and background sets were
made of 35 sequences of length 550. We implanted motifs
of increasing number and degeneracy in the foreground sets
and measured the ability of each algorithm to detect these
motifs against background sets. Background sets and non-
motif elements in the foreground sets were generated from
a background vector with 60% CG. Motifs were generated
from position weight matrices (PWMs) that correspond to
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Fig. 1. Detection-quality comparison of DWE, MDscan and YMF
when attempting to discover an implanted motif with width six
against a vector-generated background sequence set. We plot the
frequency (from 0 to 1) of the correct detection in the top five found
motifs for each method as a function of the number of implanted
motifs (from 10 to 40). Foreground and background sets contained
35 sequences of length 550; motifs are implanted uniformly at ran-
dom across the set; each data point corresponds to 100 runs of the
corresponding algorithm; and DWE-W counts the number of motif
occurrences in each set and DWE-S counts the number of sequences
containing the motif. We report results for implanted motifs with no
degenerate positions (top), one degenerate position (middle) and two
degenerate positions (bottom).

Fig. 2. Detection-quality comparison of DWE, MDscan and YMF
when attempting to discover an implanted motif with width six
against an augmented background sequence set that is created by
adding 35 additional sequences that do not contain the motif to the
background set used in the experiments reported in Figure 1. We
plot the frequency (from 0 to 1) of the correct detection in the top
five found motifs for each method as a function of the number of
implanted motifs (from 10 to 40). Each data point corresponds to
100 runs of the corresponding algorithm; DWE-W counts the num-
ber of motif occurrences in each set and DWE-S counts the number
of sequences containing the motif. We report results for motifs with
no degenerate positions (top), one degenerate position (middle) and
two degenerate positions (bottom).
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uniformly selected IUPAC words with specified number of
degenerate positions.

We constructed foreground sets with 10–40 uniformly-at-
random implanted occurrences of motifs with width six, and
0, 1 and 2 degenerate positions. For each motif type and
motif number, new foreground and background sets were
constructed and the experiment was repeated 100 times. We
selected the top five motifs found by DWE when counting
motif occurrences (denoted by DWE-W), DWE when count-
ing the number of sequences containing the motif (denoted
by DWE-S), MDscan and YMF. We did not remove depend-
ences between the motifs found by the algorithms, potentially
allowing for similar motifs in the top-5 set. We report the pro-
portion of trials where the implanted motif matched a top-5
motif. When matching motifs, we matched a degenerate ele-
ment using all of the nucleotides it represents. Our results
suggest that DWE outperforms MDscan on non-degenerate
motifs, MDscan outperforms DWE on degenerate motifs, and
YMF performs worse than DWE and MDscan (Fig. 1).

We tested the ability of the algorithms to discover implanted
motifs that are strongly underrepresented in the background
set. We augmented the randomly constructed background
sets in our initial experiments with 35 additional sequences
of length 550 that do not include any occurrences of the
implanted motif. The detection quality of the algorithms when
using the augmented background sets is reported in Figure 2.
The performance of DWE improved dramatically, while the
performance of MDscan and the performance YMF did not
improve substantially.

Liver-Specific Promoter Database
We used DWE to discover motifs that are overrepresented
in LSPS against the vertebrate promoter subset of EPD78
(Table 1), and against that set excluding promoters of liver-
expressed genes (Table 2). We searched for (3+gap+3)mers
and (4+gap+4)mers, with rigid gaps ranging from 0 to 7 bp
and at the most two degenerate positions. We also searched
for the motifs that are overrepresented in the consensus set
against the vertebrate promoter set from EPD78 (Table 3).
We repeated these searches using MDscan and report the
top 3 motifs of lengths 6, 8 and 10 in each experiment;
(Tables 4–6).

Initially, MDscan reported poly(A) and alternating C–T
motifs. These motif are found to be strongly overrepresen-
ted by DWE when motif autocorrelation is not considered.
However, the number of occurrences of these motifs decreases
substantially when selfoverlap is not permitted, and they are
not reported in the top 50. In order to use MDscan more effect-
ively, we masked all substrings that correspond to cycles of
periods 1 and 2 and length 8 or greater. The results by MDscan
still differ substantially from the results of DWE, but both
identify binding sites that are similar to known binding sites
for hepatocyte nuclear factors HNF-4 and HNF-1.

Table 1. Motifs that are strongly overrepresented (by occurrence count)
in promoters of liver-expressed genes (LSPS) against promoters of liver-
expression independent genes (EPD)

Motif FO BO L P TTF C

A•A••T•A 230 7843 2.2 8.4E−27 HNF-4 81
A•T••••A•A 213 8012 2.0 2.9E−20 C/EBPβ 81
T•CA•A 233 9239 1.9 8.8E-19 C/EBP 79
CAA•••T 189 6973 2.0 2.5E−18 HNF-4 74
TAA••HA 149 4950 2.2 2.7E-18 HNF−3β 54
T•T•AA 208 8199 1.9 3.4E−17 73
ACA•ADD 154 5364 2.1 3.5E−17 SRF 44
AT•AA 188 7220 1.9 1.1E-16 HNF−1 90
A•A•AG 254 11078 1.7 1.3E−15 HNF-4 80
CT•TG 284 12933 1.6 3.6E-15 HNF−4 84

FO (foreground occurrences) is the number of occurrences in LSPS; BO (background
occurrences) is the number of occurrences in EPD promoters; L stands for LFR; P is
the P -value; TTF (TRANSFAC transcription factor) is the transcription factor whose
binding site PFM in TRANSFAC best matches the motif; and C (conservation) is the
number of occurrences of the motif in the consensus set that is generated from an
alignment of LSPS promoters with their orthologs.

Table 2. Motifs that are strongly overrepresented (by occurrence count) in
LSPS against EPD vertebrate promoters of genes that are not known to be
expressed in liver

Motif FO BO L P TTF C

A•A••T•A 230 7271 2.3 1.2E−28 HNF-4 81
TD••TTA 147 4492 2.3 1.2E−19 qa-1F 54
CAA•••T 189 6528 2.1 1.6E−19 HNF-4 74
THT••T•A 168 5781 2.1 1.2E−17 HNF-3β 48
AT••••CA 162 5521 2.1 1.9E−17 C/EBPβ 57
DT•••AAA 161 6073 1.9 1.1E−13 C/EBPβ 62
AAG•••T 191 7808 1.7 7.8E−13 HNF-4 76
HAT••AG 124 4590 1.9 2.9E−11 POU2F1 39
AKTAACCH 16 112 10.2 3.8E−11 HNF-1 6
A•A••G•T 160 6683 1.7 2.5E−10 HSF1 52

See Table 1 for a complete legend.

Table 3. Motifs that are overrepresented (by occurrence count) in the
consensus set against EPD vertebrate promoters

Motif FO BO L Z TTF

GTTAAT 9 323 1.0 8.8 HNF-1
TAAT•ATTR 6 72 3.0 5.5 POU1F1
TMCTGGAA 4 47 3.1 3.7 STAT
GTTA••••TTAA 4 32 4.6 3.6 qa-1F
GTYAATGA 4 35 4.2 3.6 HNF-6
GGHTCATA 3 28 3.9 2.7 LF-A1
CGTGSTGA 3 26 4.2 2.7 SREBP-1
CTAG•CAAK 3 24 4.5 2.7 C/EBP
AMTA••AACC 3 22 5.0 2.6 c-Myb
ACSG••••••GTCA 3 19 5.7 2.6 HNF-4
GAGC••CATC 2 13 5.6 1.7 C/EBPβ

Z is the Z-test score; see Table 1 legend for the remaining entries.
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Table 4. Top three motifs of lengths 6, 8 and 10 found by MDscan to be
over-represented in LSPS against EPD78 vertebrate promoters

Motif Score Segments TTF C

AGCGCT 4.74 172 0
TTACCT 4.72 154 SREBP-1 6
AGGGCT 4.67 182 4
AGRGCTGG 3.731 98 HEB 2
CTAAGGAA 3.630 77 NERF-1i 1
CCCARCCC 3.607 115 CAC-binding 5
TTAATKATTA 3.044 51 SBF-1 1
RGGGKTGGGG 3.003 67 SREBP-1 0
CTGAGTTCAG 2.978 67 Alx-4 0

Motif is the motif consensus; Score is the total relative entropy score of the motif; Seg-
ments is the number of aligned segments used to generate the motif; TTF (TRANSFAC
transcription factor) is the transcription factor whose binding site PFM in TRANSFAC
best matches the motif; C (conservation) is the number of occurrences of the motif con-
sensus in the consensus set that is generated from an alignment of LSPS promoters with
their orthologs.

Table 5. Top three motifs of lengths 6, 8 and 10 found by MDscan to be over-
represented in LSPS against EPD78 vertebrate promoters that are not known
to be strongly expressed in liver

Motif Score Segments TTF C

ATGTGT 5.00 131 3
TACATA 4.97 160 VBP 4
TATGTT 4.97 156 HNF-3β 3
AWTAATTA 3.95 67 POU2F1 6
TRATTAAT 3.95 89 HNF-1 3
AATGATTA 3.91 95 Alx-4 1
AATSATTAAY 3.41 49 Vmw65 3
TTAATWATTA 3.36 82 HNF-1 0
GTTAATAATT 3.35 53 HNF-1 1

See Table 4 for complete legend.

Table 6. Top three motifs of lengths 6, 8 and 10 found by MDscan to be over-
represented in the consensus set against vertebrate promoters in EPD78

Motif Score Segments TTF

CGTAGG 4.89 112
CCTATG 4.78 118 HNF-4
CCTACC 4.78 159
TACCTATG 3.68 88 HNF-4
CGTAGTTA 3.65 80 MYB.PH3
CCGATAAC 3.62 77 GATA-1
SGMTCGRGCG 3.06 51 CUTL1
ATAGGATCGA 3.05 60 CUTL1
GATCGATCGA 3.04 55 CUTL1

See Table 4 for complete legend.

Because the consensus set allows for a very small number
of trials for each word structure, and because of the high-
false-negative rate when using a consensus, we did not find

motifs with P -values <0.001 when searching in the consensus
against EPD vertebrate promoters. Instead, we report motifs
by Z-test score (Table 3).

For each motif x with nf occurrences in the foreground set
and nc occurrences in the consensus set, we found all degen-
erate words having the same structure and the same count in
the foreground set, and counted the number of occurrences
of these words in the consensus set. Our results suggest that
the majority of these words are strongly conserved in the con-
sensus set. These results are reported in the Supplementary
information.

DISCUSSION AND CONCLUSION
DWE is a fast word-counting-based tool for discovering
overrepresented motifs in one set of promoters relative to
another. Our results on synthetic data suggest that DWE out-
performs existing methods on a large class of motifs, and is
best suited for finding overrepresented motifs against care-
fully selected background sets. However, the accuracy of
DWE decreases with increasing motif degeneracy. In addi-
tion to single motifs, DWE can find overrepresented motif
tuples. A feature of DWE’s P -value motif comparison method
is that it allows comparisons of motifs with different struc-
tures, and motifs that are found using different foreground or
background sets.

We used DWE to search for overrepresented motifs in prox-
imal promoters of liver-specific genes, and found that HNF
binding sites and binding sites for CCAAT/enhancer-binding
protein (C/EBPβ) are the most overrepresented. This conclu-
sion is largely supported by experiments with MDscan, and
agrees with the results of Baumhueter et al., (1988), Costa
et al., (1989), Xanthopoulos et al., (1991), Thomas et al.,
(2001) and Krivan and Wasserman, 2001. Our results on syn-
thetic data suggest that DWE has a high degree of accuracy
when searching for motifs with structures and frequencies
characteristic to the majority of motifs reported.

When searching for co-occurring motif pairs, we found that
HNF-4 binding sites have strong synergistic relationships with
other HNF-4 binding sites and with binding sites of HNF-1,
HNF-3β and C/EBPβ. These relationships are supported by
high conservation ratios (number of occurrences in LSPS
versus number of occurrences in the promoter consensus set),
and agree with the results of Miura and Tanaka (1993), Antes
and Levy-Wilson (2001) and Hatzis and Talianidis (2002).

Our results suggest that the majority of top motifs found by
DWE are conserved, but few motifs such as CWGT•••CABA
and ATAGTYTV of Tables 7 and 8 have low conservation
ratios and may be false positives. The majority of motif pairs
in Tables 9 and 10 have weak conservation ratios, but the
motif pairs GWTA••••TTDA MWG•TTA, GWTA••••TTDA
AAMRGT, GWTA••••TTDA TTGBAA and GDTA••••TTRA
TTGBAA have relatively high-conservation ratios, which may
indicate a more biologically significant relationship (Tables 11

36



Discriminating Word Enumerator

Table 7. Motifs that are strongly overrepresented (by sequence count) in pro-
moters of liver-expressed genes (LSPS) against promoters of liver-expression
independent genes (EPD)

Motif FO BO L P TTF C

GWTA••••TTDA 15 120 8.5 9.4E−11 HNF-4 9
T•ATSA 33 1158 1.9 1.1E−08 21
CWGT•••CABA 17 244 4.7 1.7E−08 C/EBPβ 2
GTTAATGW 9 44 13.9 2.7E−08 HNF-1 4
GGCWCAYA 12 116 7.0 8.7E−08 3
ATA•TWR 28 837 2.3 9.2E−08 10
TTGBAA 30 982 2.1 9.7E−08 C/EBPβ 16
ATAGTYTV 11 93 8.0 9.8E−08 ICSBP 2
MWG•TTA 31 1059 2.0 1.0E−07 HNF-3β 12
AAMRGT 33 1259 1.8 1.5E−07 PPAR-γ 12

See Table 1 for a complete legend.

Table 8. Motifs that are strongly overrepresented (by sequence count) in
promoters of liver-expressed genes (LSPS) against promoters of genes that
are not known to be expressed in liver

Motif FO BO L P TTF C

GDTA••••TTRA 15 99 9.9 1.4E−11 HNF-4 7
GTTAATSW 11 66 10.8 5.9E−09 HNF-1 5
CWGT•••CABA 17 223 5.0 8.9E−09 C/EBPβ 2
AT•A•HAAC 17 234 4.7 1.8e−08 HNF-3β 9
ATA•TWR 28 775 2.4 4.2E−08 10
ATAGTYTV 11 82 8.7 4.6E−08 ICSBP 2
GGCWCAYA 12 107 7.3 6.1E−08 3
TTGBAA 30 922 2.1 6.4E−08 C/EBPβ 16
AGAY••THTG 13 137 6.2 9.2E−08 HSF1 1
ACATWD 32 1092 1.9 1.1E−07 11

Table 9. Top pairs (by sequence count) of the motifs from Table 7

Motif pair FO BO L P C

GWTA••••TTDA MWG•TTA 15 78 13.1 8.6E−11 5
GWTA••••TTDA AAMRGT 15 85 12.0 2.4E−10 5
GWTA••••TTDA ATA•TWR 14 73 13.0 3.3E−10 3
GGCWCAYA ATAGTYTV 7 6 79.3 4.4e−10 1
GWTA••••TTDA TTGBAA 13 63 14.0 5.7e−10 4

C (conservation) is the number of consensus sequences that contain non-overlapping
occurrences.

and 12). We note that motifs found by DWE have relatively
higher conservation ratios than motifs found by MDscan.

We also examined motifs that had a large number of occur-
rences in LSPS but were not overrepresented against EPD
vertebrate promoters. We found that many of these motifs
have high conservation ratios. These motifs are reported in
the Supplementary information.

Table 10. Top pairs (by sequence count) of the motifs from Table 8

Motif pair FO BO L P C

GDTA••••TTRA ATA•TWR 15 57 17.1 3.5E−12 2
ATAGTYTV GGCWCAYA 7 2 227.8 1.3E−11 1
AT•A•HAAC AGAY••THTG 10 20 32.5 5.4E−11 0
ATA•TWR GGCWCAYA 11 35 20.5 3.6E−10 1
GTTAATSW ATA•TWR 11 39 18.4 9.3E−10 2
GDTA••••TTRA TTGBAA 12 53 14.7 1.5E−09 4

C (conservation) is the number of consensus sequences that contain non-overlapping
occurrences.

Table 11. Top pairs (by occurrence count) of the motifs from Table 1

Motif pair FO BO L Z C

A•A••T•A A•A•AG 2601 60904 3.4 2.5E+03 1549
A•T••••A•A A•A•AG 2430 63844 3.0 2.3E+03 572
A•A•AG• CT•TG 2414 76222 2.5 2.3E+03 415
A•A••T•A A•T••••A•A 2383 61598 3.1 2.3E+03 577

P -values are 0, Z is the Z-test score and C (conservation) is the sum of the number of
non-overlapping co-occurrences in each consensus sequence

Table 12. Top pairs (by occurrence count) of the motifs from Table 2

Motif pair FO BO L Z C

A•A••T•A DT•••AAA 2107 49913 3.2 2.0E+03 439
A•A••T•A THT••T•A 1871 43255 3.3 1.8E+03 385
A•A••T•A AAG•••T 1845 41300 3.4 1.8E+03 431
A•A••T•A AT••••CA 1813 32682 4.2 1.7E+03 406
A•A••T•A TD••TTA 1752 36261 3.7 1.7E+03 500
A•A••T•A CAA•••T 1693 35538 3.6 1.6E+03 411

P -values are 0, Z is the Z-test score and C (conservation) is the sum of the number of
non-overlapping co-occurrences in each consensus sequence.

Our consensus construction method can be used to filter
out false-positive detections, but in its current state it is error-
prone. Consensus construction through ortholog alignment
requires promoter alignment tools and consensus construction
tools that are not yet perfected. Our method is very conser-
vative when aligning ortholog promoters from distant species,
and has little impact on false-positive filtration when aligning
ortholog promoters from close species. Moreover, by using
CLUSTALW we impose a colinearity constraint and do not
consider inversions or TFBS birth and death events.

We used DWE to discover liver-specific cis-regulatory ele-
ments. Of course, DWE can be used to discover motifs
in promoters of any co-regulated genes. To improve its
performance in detecting more degenerate motifs, DWE
should be modified to use PWM scores instead of occurrence
counts.
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