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ABSTRACT

Substitution matrices have been useful for sequence alignment and protein sequence com-
parisons. The BLOSUM series of matrices, which had been derived from a database of
alignments of protein blocks, improved the accuracy of alignments previously obtained from
the PAM-type matrices estimated from only closely related sequences. Although BLOSUM
matrices are scoring matrices now widely used for protein sequence alignments, they do
not describe an evolutionary model. BLOSUM matrices do not permit the estimation of
the actual number of amino acid substitutions between sequences by correcting for multi-
ple hits. The method presented here uses the Blocks database of protein alignments, along
with the additivity of evolutionary distances, to approximate the amino acid substitution
probabilities as a function of actual evolutionary distance. The PMB (Probability Matrix
from Blocks) de� nes a new evolutionary model for protein evolution that can be used for
evolutionary analyses of protein sequences. Our model is directly derived from, and thus
compatible with, the BLOSUM matrices. The model has the additional advantage of being
easily implemented.
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1. INTRODUCTION

Amodel describing the probability of substitution from one amino acid to another is useful for
sequence alignment, phylogenetic analysis, the inference of ancestral protein sequences, and computer

simulation of protein evolution (see Thorne [2001] for review). Models can be obtained from the ad hoc
de� nition of parameters such as in the codon substitution model, for which probabilities of substitution for
the amino acids depend on the number and type of base substitution that are needed at the DNA coding
level. Parameters of the model can also be estimated using a rigorous maximum likelihood approach, but
this approach is computationally intensive, makes several restrictive assumptions about the parameters,
and assumes a known tree topology (Adachi and Hasegawa, 1996; Yang et al., 1998; Adachi et al.,
2000; Whelan and Goldman, 2001). The parameters can also be obtained in an empirical manner from
alignments of closely related proteins. The Dayhoff PAM matrices (Dayhoff et al., 1978) and related Gonnet
(Gonnet et al., 1992) and JTT (Jones et al., 1992) matrices de� ne estimates of transition probabilities from
the frequencies of substitution observed in actual proteins. For very closely related proteins, multiple
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substitutions at a site are unlikely, so the observed frequencies of substitution accurately re� ect the actual
substitution probabilities. Substitution models derived from only closely related proteins are not likely to
be accurate at higher evolutionary distances. Recently, approaches were developed to estimate an amino
acid substitution model from alignments of varying degrees of divergence. Arvestad and Bruno (1997)
developed a method applicable to smaller datasets. Muller and Vingron (2000) developed a model using
properties of the resolvents of the corresponding transition matrices and the SYSTERS database of aligned
protein sequence families (Krause et al., 2000). Devauchelle et al. (2002) used principal component analysis
to estimate a model from transition matrices.

The BLOSUM series of matrices was derived to increase the accuracy of scoring matrices for larger
sequence divergence. In the approach of Henikoff and Henikoff (1992), frequencies of substitution were
obtained from a database of Blocks. A series of scoring matrices, applicable to sequences with increasing
divergence, was then derived by clustering sequences above a given sequence identity so that their contri-
bution is down-weighed. The BLOSUM matrices give a score for each type of amino acid substitution and
were shown to produce superior alignments (as assessed by their performance in database searches) when
compared to scoring matrices obtained from PAM matrices (Henikoff and Henikoff, 1992). The advantage
of the Blocks database is that the alignments are very reliable; only the parts of protein sequences that
have been aligned without any gaps are included. Because there are no gaps in the alignments, the database
is ideal to model the process of amino acid substitution without regard for the processes of insertion and
deletion. However, the BLOSUM matrices derived from Blocks are scoring matrices and do not de� ne a
probability model of substitution.

Here we have used a very simple approach, based on the original clustering approach of Henikoff and
Henikoff (1992), to generate BLOSUM matrices from an updated version of the Blocks database. From
these BLOSUM matrices, we derived mutability matrices. The mathematical property that evolutionary
distances are additive was used to estimate the relationship between the actual substitution frequency and
the average observed substitution frequency. The mutability matrices could then be expressed as a function
of actual evolutionary distance thus de� ning an evolutionary model for protein evolution that is consis-
tent with the BLOSUM scoring matrices and that is applicable over the complete range of evolutionary
divergence.

2. METHODS

2.1. Blocks and BLOSUM

We obtained the Blocks databases (Henikoff et al., 1999) from the NCBI ftp site.1 The databases we
analyzed excluded blocks that are biased in their composition (usually because of repeats in the sequences
when available (the minus.dat � les). The most recent Blocks database was BlocksCv13Aug01 (Henikoff
et al., 1999). Also from the NCBI ftp site,2 we obtained the program BLOSUM (Henikoff and Henikoff,
1992) to � nd the observed frequency of each type of amino acid substitution (the frequency matrices). The
program was run for clustering percentages ranging from 30% to 100% in increments of 2%, and for no
clustering, yielding a series of frequency matrices, one for each clustering percentage.

2.2. Mutability matrices

Here we de� ne mutability matrices and present some important properties. For the present subsection,
subscripts are used to indicate matrix and vector elements. Let F be any substitution frequency count
matrix obtained from BLOSUM. Since F is symmetric (i.e., the order of replacement of amino acids is
not known) and forward and backward substitutions are combined in a single count, we assume throughout
that the diagonal values of F have been doubled. The vector ¼ of observed frequencies for each amino

1ftp://ncbi.nlm.nih.gov/repository/blocks/
2ftp://ncbi.nlm.nih.gov/repository/blocks/unix/BLOSUM/
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acid is obtained by summing each row of F and dividing by the sum of all entries in the matrix:

¼i D

20X

jD1

Fij

20X

i 0D1

20X

jD1

Fi 0j

: (1)

Each row of the frequency matrix is then divided by the sum of the corresponding row resulting in
mutability matrix M :

Mij D
Fij

20X

jD1

Fij

: (2)

Mutability matrices describe the frequency of any amino acid being substituted by any other (including
itself). Because each element of a mutability matrix falls between 0 and 1 and the sum of the elements in
each row is equal to 1, mutability matrices are stochastic matrices. The mutability matrices derived from
the frequency matrices are reversible and thus ful� ll the detailed balance equation:

¼iMij D ¼j Mj i : (3)

The average substitution frequency can be calculated from the mutability matrices and the frequency of
the amino acids using the formula

D.M/ D 1 ¡
20X

iD1

¼iMii : (4)

The mutability matrices describe the observed frequencies of substitution (observed distance) expected
after an unknown actual evolutionary distance P . Therefore, in addition to the de� nition given above, a
mutability matrix can also be considered a function of P . To re� ect the dependence of a mutability matrix
upon the (unknown) evolutionary distance of the sequences from which M was derived, we let M.P /

denote the mutability matrix M as a function of some evolutionary distance P . The value of P is unknown
since sequences ancestral to those in the alignment are unknown and because multiple substitutions may
have actually occurred at any site. Since actual evolutionary distance is an additive metric, taking the
square (square root) of a mutability matrix will double (halve) the actual evolutionary distance. In general,
for any mutability matrix M and any number n,

M.P /n D M.nP/: (5)

Equation 5 is a special form of the Chapman–Kolmogorov equation for Markov chains. It was this property
that allowed the derivation of the PAM series of matrices from 1 PAM (Dayhoff et al., 1978).

As stated in Section 2.1, our method makes use of data obtained from BlocksC and BLOSUM at a series
of clustering percentages. Unless otherwise stated, for the rest of this paper we use subscripts to indicate
a clustering percentage; e.g., the matrix Mc is the mutability matrix corresponding to some clustering
percentage c 2 f0; 30; 32; 34; : : : ; 96; 98; 100g.

2.3. Derivation of the formula for the actual evolutionary distance

Without knowledge of ancestral sequences, the actual number of substitutions is unknown and will
always be larger that the observed substitution frequency. To determine the relationship between observed
evolutionary distance and actual evolutionary distance, we can use the additivity of mutability matrices
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(see Equation 5). This property allows us to consider the behavior of the observed distance as we linearly
increase the actual distance (by taking powers of the mutability matrices) without knowing the value of
the actual distance. Our approach is to consider for each clustering the derivative of the observed distance
with respect to the actual distance. The derivatives can be estimated numerically by considering small
fractional changes of the actual distance P . Because of the additivity property (Equation 5), making small
fractional changes to P corresponds to taking powers of the mutability matrices close to 1.

To estimate the derivatives, we used the � ve-point formula for numerical differentiation (Burden and
Faires, 1985):

df .x0/

dx
D 1

12h
.f .x0 ¡ 2h/ ¡ 8f .x0 ¡ h/ C 8f .x0 C h/ ¡ f .x0 C 2h// : (6)

The derivative of the function f is thus estimated by considering values of f at several points separated
by a small interval h. For our purpose, we substituted x0 D P , f .x0/ D D.M.P //, and h D 0:01P into
Equation 6. The resulting formula,

dD.M.P //

dP
D

1

12.0:01P /
[D.M.P ¡ 0:02P // ¡ 8D.M.P ¡ 0:01P //

C 8D.M.P C 0:01P // ¡ D.M.P C 0:02P //];

(7)

describes the derivative of the observed distance with respect to the actual distance. De� ning the small
interval h as a constant function of P allows us to use the additivity property de� ned in Equation 5. We
now have

0:12P
dD.M.P //

dP
D D.M.P /0:98/ ¡ 8D.M.P /0:99/ C 8D.M.P /1:01/ ¡ D.M.P /1:02/: (8)

We can � nd the appropriate powers (i.e., 0:98, 0:99, 1:01, and 1:02) of the mutability matrices using
MATLAB 6 (release 12) (Mathworks, Natick, Massachusetts). The expected observed distance for Mc and
its powers are calculated using Equation 4. The right-hand side of Equation 7 can then be calculated and
plotted against the D.M.P // for each clustering percentage (Fig. 1). For notational convenience, we de� ne

D D D.M.P // (9)

as the expected observed distance for an actual average distance P . The expression on the right side of
Equation 8 can be estimated by a polynomial function f in D which will yield a differential equation:

dD

dP
D f .D/ D anDn C an¡1Dn¡1 C : : : C a0: (10)

We also know initial conditions since at suf� ciently low distance there are no overlapping substitutions
and the number of actual substitutions is equal to the number of observed substitutions. Thus,

lim
P !0

D D 0 and lim
P !0

dD

dP
D 1: (11)

If the degree of the polynomial approximation is low enough, Equation 10 can be solved to give the
correction formula C for an estimate of the actual evolutionary distance OP as a function of the observed
evolutionary distance D:

OP D C .D/: (12)
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FIG. 1. Plot of the estimate of P dD=dP as a function of the expected distance (D) for each Mc matrix. The � tted
line corresponds to the cubic approximation.

2.4. Approximation of the instantaneous rate matrix

After deriving the correction formula for evolutionary distance, for each clustering percentage c, we
know the appropriate average level of evolutionary distance OPc . Another form of the Chapman–Kolmogorov
equation for Markov chains allows us to formulate the mutability matrix M as the exponential of some
instantaneous rate matrix A multiplied by a divergence time P . Therefore, for each clustering percentage
c, there exists an instantaneous rate matrix Ac , such that

Mc D exp.AcPc/: (13)

The mutability matrix Mc and the estimated evolutionary distance OPc can provide an estimate of the
corresponding instantaneous rate matrix Ac using

Ac D ln Mc

OPc

; (14)

but only when the logarithm exists (Devauchelle et al., 2002). The logarithm of a mutability matrix
may not exist when the number of substitutions is high. Additionally, to calculate the logarithm of the
matrix, a numerical procedure by Parlett (described in Golub and Van Loan (1983)) may break down
when there are repeated eigenvalues and requires the matrices to be close to unity. The accuracy of the
estimated logarithm can be veri� ed by checking that the exponential of the resulting matrix is close to
the original matrix. The difference in the norm (largest singular value) between the exponential of the
estimated log of the matrix and the original matrix is evaluated. We used the criteria3 (built into Matlab)

3The constant 2:22 £ 10¡13 corresponds to the tol variable in the logm Matlab function, which is equal to
1000£eps. The value of eps is equal to the distance from 1:0 to the next � oating point number.
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that for any clustering percentage c,

k exp.Ac
OPc/ ¡ Mck

kMck
< 2:22 £ 10¡13: (15)

The instantaneous rate matrix Ac can then be estimated from mutability matrix Mc and evolutionary
distance Pc (obtained as described in Section 2.3) as long as the condition given in Equation 15 is satis� ed.
Each clustering percentage leads to a slightly different estimate of a rate matrix. The corresponding Pc

evolutionary distances for each Mc matrix are approximated using the derivatives of the observed distances
Dc so as to make the series of matrices “colinear” in that they satisfy the additivity property of a single
Markov process as described in Equation 3. Under the assumption that a mutability matrix Mc re� ects
the result of the substitution process after evolutionary distance Pc , there should be a single, “universal”
instantaneous rate matrix U such that for any clustering percentage c,

Mc D exp.UPc/; (16)

The universal instantaneous rate matrix U can be obtained from the individual instantaneous rate matrices
by � nding appropriate weights wc , (0 · wc · 1), and de� ning

U D
X

c

wcAc (17)

where,
X

c

wc D 1: (18)

The quality of the universal instantaneous rate matrix U , and equivalently the weights wc, is based on the
sum of the relative differences

X

c

k exp.U OPc/ ¡ Mck
kMck

; (19)

which we seek to minimize.

3. RESULTS

We obtained the BLOSUM clusterings from the latest version of the database BlocksCv.13Aug01 and
calculated the mutability matrix Mc for each clustering percentage c. We also calculated each correspond-
ing average observed distance D.Mc.P // using Equation 4. We derived the correction formula for the
evolutionary distance in order to determine the degree of actual evolutionary divergence Pc corresponding
to each of these observed distances (Table 1). The estimated derivatives using Equation 8 are plotted
in Fig. 1. Using least-squares, we were able to � t the resulting curve to a quadratic polynomial (with
correlation coef� cient R2 D 0:9978) such that

P

D

dD

dP
D ¡0:571D2 ¡ 0:423D C 1 (20)

(Fig. 1). Equation 20 is a separable differential equation and thus easily solved. With the initial conditions
described above in Equation 11, we obtain the correction formula

OP D 1:228D

.1:744 C D/0:365.1:004 ¡ D/0:635 for D < 0:8813: (21)

Equation 21 describes OP , the estimated frequency of actual substitutions, as a function of D, the observed
frequency. The condition D < 0:8813 is given because our approximation does not apply above the high-
est range of divergence values we considered (corresponding to the clustering of 30%, see Table 1) and
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Table 1. The Average Observed Distance, and Average Actual Distance Derived
from the Observed Frequency Distribution of Amino Acid Pairs for Each

Clustering Percentage in the BlocksCAug01 (Minus.dat) Database

Average observed
distance PMB distance Relative residual

Cluster % (D) (P ) with U D A68

30 0.8813 2.8835 0.0890
32 0.8747 2.7712 0.0790
34 0.8678 2.6619 0.0733
36 0.8632 2.5950 0.0824
38 0.8572 2.5120 0.0768
40 0.8494 2.4112 0.0727
42 0.8422 2.3247 0.0619
44 0.8348 2.2420 0.0813
46 0.8288 2.1786 0.0708
48 0.8202 2.0940 0.0903
50 0.8099 2.0007 0.0917
52 0.8049 1.9575 0.0794
54 0.7959 1.8849 0.0706
56 0.7890 1.8320 0.0552
58 0.7810 1.7739 0.0522
60 0.7711 1.7061 0.0299
62 0.7629 1.6529 0.0245
64 0.7545 1.6019 0.0160
66 0.7458 1.5509 0.0133
68 0.7384 1.5098 0.0000
70 0.7297 1.4638 0.0069
72 0.7224 1.4270 0.0101
74 0.7145 1.3882 0.0109
76 0.7060 1.3483 0.0236
78 0.6986 1.3150 0.0253
80 0.6888 1.2727 0.0276
82 0.6818 1.2436 0.0290
84 0.6727 1.2074 0.0442
86 0.6637 1.1726 0.0481
88 0.6552 1.1412 0.0548
90 0.6440 1.1012 0.0491
92 0.6327 1.0628 0.0620
94 0.6185 1.0166 0.0702
96 0.5987 0.9561 0.0838
98 0.5692 0.8734 0.1061

100 0.4671 0.6373 0.1411
n 0.3385 0.4119 0.1553

extrapolation to larger values of D will most likely not be accurate. Since the limit of applicability corre-
sponds to a very large degree of sequence divergence in the range where alignments become questionable,
extrapolation should not be necessary in most applications. The condition should therefore not restrict the
applicability of the formula for actual protein alignments. The correction formula for multiple hits was
compared to the Jukes and Cantor (1969) formula for amino acids,

P D 19
20

ln

³
1 ¡ 20

19
D

´
; (22)

which assumes an equal rate of substitution between amino acids, each with the same frequency. We also
compared this correction with that of the original PAM matrices (Dayhoff et al., 1978) as shown in Fig. 2.
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FIG. 2. Plot of the actual substitution frequency versus the observed substitution frequency. Shown are the estimates
using the Dayhoff PAM matrix (long dashes), the Jukes and Cantor formula (short dashes), The VT matrix (dots) and
our new approximation (solid line).

We see that the correction is more severe than that by Jukes and Cantor (1969) but not as severe as the
Dayhoff et al. (1978) PAM approximation. We also calculated the observed expected distance for powers
of the exponential of the (Muller and Vingron, 2000) VT rate matrix (Fig. 2) divergence. Surprisingly, the
curve for our correction formula is extremely close to that of the VT matrix, which was obtained with a
different method and with a different database.

The mutability matrices Mc we derived from the Blocks database all had positive eigenvalues, and all
gave accurate logarithms that could be used for the approximation of a rate matrix. The relative error of
the estimate of the log matrix could be estimated (Equation 15). This error was extremely small for all
clusterings, well within tolerance, even for matrices with the highest levels of sequence divergence which
are far from unity.

Figure 3 shows the relative residual between speci� ed U matrices and each of the Ac matrices. We call
these the cluster residuals. We found that the matrix with the smallest average cluster residual is given by
the rate matrix A68, which is given in Fig. 4. It de� nes the matrix for PMB.P / (Probability Matrix from
Blocks) such that

PMB.P / D exp.0:01P U/; (23)

where P is the evolutionary distance in PAM units. We implemented the PMB matrix into the PROML
and PROTDIST v3.6 programs of the PHYLIP package (Felsenstein, 2002). We named those versions of
the programs PMBML, PMBMLK, and PMBDIST. They are available for download from the web site
www.uhnres.utoronto.ca/tillier/pmb/pmb.html. We compared lod scoring matrices obtained from the PMB
matrix with those for the VT matrix (Muller and Vingron, 2000). We found that they are quite similar,
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FIG. 3. Relative difference between Universal rate matrix and rate matrices from the mutability matrices. U D Ac

for c 2 f30; 40; 50; 60; 72; 80; 90; 100; ng or U taken as the average, and as the weighted average of all mutability
matrices.

and an example is shown in Fig. 5 for the 250 PAM level. This is not surprising because although the VT
matrix was obtained from a different database and with a much more complicated and computationally
intensive approach, it was also found to give scoring matrices very similar to the BLOSUM matrices. This
shows the strong in� uence of the matrix used to align protein sequences because the BLOSUM matrix
was used to obtain the alignments upon which the VT matrix was derived (Muller and Vingron, 2000).

FIG. 4. The instantaneous rate matrix for PMB. The � rst column gives the frequencies for each of the amino acids.
Entries are multiplied by 10,000. Diagonal elements are such that the rows of the matrix add up to zero.
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FIG. 5. Comparison of log odds (lod) score tables for the PMB matrix. The upper triangular matrix shows the
difference between the 10 log 10 scoring matrix for VT(120) minus the 10 log 10 scoring matrix for PMB(120). The
lower triangular matrix shows the difference between the 10 log 10 scoring matrix for BLOSUM62 minus the 10 log 10
scoring matrix for PMB(120) matrix. Absolute differences ¸ 2 are shaded.

We used bootstrap resampling (Efron, 1979) to assess the variability in our estimate of the PMB matrix.
The bootstrap samples were created by randomly sampling blocks with replacement from the database.
The overall size of the resulting database was unchanged from that of the original, but some blocks
were represented more than once and some blocks not at all. For each of these samples, an estimated
instantaneous rate matrix was obtained with the procedure described above, and its relative norm residual
with PMB was calculated.

We also investigated how the estimate of the rate matrix varied with the growth of the Blocks database.
Universal rate matrices were derived from several earlier versions (Blocks v5.0, v8.0, v9.0, v10.1, v11.0,
and Cv12Nov00). We performed bootstrap resampling of these databases to estimate the variability in the
estimates. In Fig. 6, the mean residuals and the standard deviation over 100 bootstrap replicates are given
for each of the database versions. The bootstrap residuals are generally only slightly higher than the cluster
residuals (also shown in Fig. 6), indicating a small variability in the estimate. This variability does increase
slightly with the earlier, smaller databases, but even the earliest database was already large enough to obtain
an accurate estimate of the rate matrix. The Blocks v.5.0 database consists of 2,106 blocks and was the
smallest available, so to investigate the behavior of the matrix estimates on even smaller databases, we
took 20 random samples of this database to generate databases 50% and 25% its original size (in blocks).
Each of these was bootstrapped, and the results are shown in Fig. 6. Only for those very small databases
were the boostrap residuals signi� cantly increased.

The relative residual between the universal matrices obtained for each version of the Blocks database
and PMB (from BlocksCv.13Aug01) was also calculated and compared to the residuals with the VT matrix
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FIG. 6. Relative residuals between matrices are shown calculated from the different versions of the Blocks database.
Grey bars indicate the mean residuals between the Universal matrix obtained for the database and of the matrices
obtained with each clustering of the database. Hashed bars indicate the residuals with the Universal matrix obtained
with that database and that obtained in a 100 bootstrap samples. Black bars indicate the residuals of PMB (the universal
matrix obtained with the BlocksCv13Aug01 database) and the Universal matrix from earlier versions of Blocks. The
dashed bars indicate the residuals of the VT matrix with the Universal matrices. Error bars indicate plus/minus one
standard deviation. The v.5*50% and v.5*25% are databases obtained by randomly sampling one half and one quarter
of the blocks in the the v.5.0 June 1992 database; this was done 20 times, and the mean and standard deviation of the
residuals are plotted.

(Fig. 6). These comparisons show that the estimate of the universal rate matrix between the versions of
the database is much smaller than the difference with VT con� rming the result of Fig. 5 showing the
differences between the lods scoring matrices obtained from PMB, BLOSUM, and VT.

4. DISCUSSION

The method of clustering sequences of given sequence identity percentages used in BLOSUM allows the
derivation of substitution matrices that are applicable at larger average distances. These matrices are useful
for determining relative weights for the different types of substitution and have been widely accepted for
sequence alignments. For the matrices to be considered as an evolutionary model, however, we need to
know the level of actual sequence divergence to which the relative weighing of substitutions correspond.
We were able to derive a function for the actual evolutionary distance that rendered the BLOSUM matrices
of observed substitution frequencies additive with respect to that overall average distance. The substitution
matrices expressed as a function of the actual evolutionary distance then describe an evolutionary model.
The database of Blocks contains an unde� ned mixture of sequence divergence values. The BLOSUM
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approach makes inclusive subsets of the database by clustering sequences with an increasing level of
sequence identity, and thus down-weighing the contribution from closely related sequences. The matrices
are thus derived from sequence alignments that are completely inhomogeneous with respect to evolutionary
time. From an evolutionary perspective, the clustering of the data should have a lower bound of sequence
identity as well as an upper bound. A more accurate frequency matrix and average distance could be
calculated given a more de� ned evolutionary period. The maximum likelihood methods and the resolvent
method attempt to get around the problem of time inhomogeneity in the datasets either by assuming the
phylogeny or by estimating evolutionary distances in pairwise sequence alignments. But all alignments are
subject to inhomogeneity due to variable rates of substitution at different sites. We kept to the clustering
method of Henikoff and Henikoff (1992) in order to derive a matrix compatible with the BLOSUM series.
Regardless of how the data is partitioned, a substitution probability matrix can be derived from each
subset. From these matrices, we can estimate the average observed distances and their derivatives in order
to determine the average level of actual evolutionary divergence for the substitution probability matrices.
Once the actual evolutionary distance corresponding to each clustering is known, then rate matrices can
be estimated from the logarithms of probability matrices. The PMB is a single universal rate matrix that
most closely describes the substitution process over all clustering of the BLOCKS database.

In the derivation of the PMB, we made several approximations. First, the derivative of the expected
evolutionary distance was approximated using the � ve-point formula of Equation 6, and a function of the
derivative was approximated again as a polynomial in Equation 20. These two approximations allowed
us to describe the relationship between the actual substitution rate and the observed substitution rate as
a differential equation with a real-valued solution. The � ve-point estimate is a very good estimate and
justi� able since it is not signi� cantly different from the three-point estimate (indicating convergence, data
not shown). The quadratic least-squares approximation was almost a perfect � t and had the advantage of
yielding a soluble differential equation for the actual evolutionary distance. The third approximation was
made to estimate the logarithms of the mutability matrices. These approximations fell well within toler-
ance, even for mutability matrices that were not close to the unit matrix (i.e., for matrices corresponding
to high evolutionary distances). The last approximation occurs when a single mutability matrix was used
to approximate the universal rate matrix. We chose the rate matrix derived from the BLOSUM clustering
percentage of 68 because it yielded the smallest deviation between estimated and actual mutability frequen-
cies over the entire range of sequence divergence. That the matrices for the lowest and highest clustering
levels were the least well estimated can be partly attributed to sampling error in these matrices due to the
fact that entries outside of the diagonal are sparse for the high clustering percentages and the entries on
the diagonal are sparse for the lower clustering percentages. The best approximation is, of course, to the
matrix from which the universal matrix was derived, and the error increases for the matrices away from
it. Overall, the average relative difference was less than 5%.

The accuracy of our model for the substitution process depends on the variability in that substitution
process and the amount of data available to estimate it. To assess the variability in PMB, we obtained
instantaneous rate estimates from bootstrap samples of the original database and those from earlier versions
of the database. We found that the variability in the bootstrap estimates was only slightly higher than the
variability of matrix estimates obtained from the different clusterings of the database. The results also
showed that the estimates of the universal instantaneous rate matrices from earlier versions of the Blocks
database were not statistically different from the PMB matrix. This explained our � nding that there was
only a small difference between the Blosum 62 scoring matrix derived from Blocks 5.0 in 1992 and the
equivalent scoring matrix obtained from PMB (Fig. 5). Versions of the Blocks database pre-1992 were
not available, so by sampling 50% and 25% of the blocks from the earliest available database, we created
smaller databases from which to obtain estimates and to evaluate the relationship between the estimate
reliability and the database size. Bootstrap resampling did show increased variability with estimates from
these small databases, and the average residual with PMB was increased, but it was still smaller than the
difference between PMB and VT. The estimate of the rate matrix from Blocks has been quite robust even
though the size of the database has increased to over 20 times (in bytes) its size since 1992.

The PMB matrix was derived very simply and directly in the same manner as the BLOSUM matrix and
with the additional estimation of corrected evolutionary distances to de� ne an evolutionary model. The
PMB model we derived is meant as an approximation that describes the average evolutionary behavior
of the average amino acid in the average protein, but few amino acids in real proteins will actually
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conform exactly to the model. Popular protein alignment applications such as Blast (Atschul et al., 1990),
Fasta (Pearson and Lipman, 1988), and ClustalW (Thompson et al., 1994) all currently use the BLOSUM
matrices. Since the alignment and the evolutionary model are closely linked (Mitchison, 1999), it makes
sense to use an evolutionary model compatible with the alignment-scoring matrix. The PMB matrix has
been derived using sequences in the complete range of sequence divergence and should be more accurate
than the PAM matrix (Dayhoff et al., 1978) or the JTT matrix (Jones et al., 1992). The PMB matrix is easily
incorporated into applications that use such matrices, including those applications in the popular Phylip
package for phylogenetic analysis (Felsenstein, 2002). The improvement for the analysis of any speci� c
protein family will depend on how closely the evolution of the sequences follows the average for the
proteins in the Blocks database upon which the PMB model is based. The methods that are described here
are fast and easily implemented and can be used to develop more speci� c substitution matrices applicable
to protein families and protein domains.
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