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Introduction

RNA-binding proteins (RBPs) recognize specific motifs in pre-
mRNAs and mRNAs and by doing so, regulate gene expression 
via splicing, transport, stability, localization and translation. 
RBPs can contribute or lead to tumor formation when aberrantly 
expressed as they can interfere with the expression of specific 
gene subsets in cell cycle control, proliferation, apoptosis and 
differentiation.1,2

Musashi1 (Msi1) is an RBP that has been connected to the 
development of multiple tumor types.3-9 Msi1 is evolutionarily 
conserved, being initially identified in Drosophila melanogaster 
where it is required for development of adult external sensory 
organs (sensilla) and for maintenance of germ-line stem cell 
identity.10,11 In vertebrates, Msi1 has been equally implicated in 
nervous system development. Its expression in adults is mainly 
restricted to stem and precursors cells.12 Msi1 defines a popula-
tion of multipotent stem cells in the brain, intestinal crypt cells, 
breast and hair follicles.13-20 Msi1 has been determined to be 
highly expressed in several malignancies, such as glioblastoma 
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multiforme, medulloblastoma, cervical carcinoma, lung and 
colon cancers.3-9 A connection between Msi1 expression and 
prognosis was established in the case of gliomas.5 A study done 
with HCT116 colon cancer cells revealed that knockdown of 
Msi1 produces tumor growth arrest in xenografts, reduces cancer 
cell proliferation and increases apoptosis alone and in combina-
tion with radiation injury.21 Similar results were obtained with 
breast cancer cells where Msi1 was determine to be a negative 
prognostic indicator of breast cancer patient survival, and an 
indicator of tumor cells with stem cell-like characteristics. A 
recent study illustrates that Msi1 can function as a proto-onco-
gene. Intestinal epithelium progenitor cells overexpressing Msi1 
showed an increase in proliferation via the activation of Wnt and 
Notch pathways. Importantly, these cells acquired tumorigenic 
properties as observed in xenograft experiments.22

A very important question is which regulatory elements trig-
ger Msi1 high expression in cancer cells. Its long 3' untrans-
lated region (UTR) suggests that post-transcriptional regulation 
might play a major role; this would include the action of microR-
NAs (miRNAs). In fact, several miRNAs have been determined 
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For the identification of putative Msi1-targeted miRNAs, 
we conducted an in silico search using the TargetScanHuman 
webform.29 To narrow down the list, we specifically searched for 
tumor suppressing miRNAs that have been implicated in malig-
nant tumors of the nervous system. Table 1 lists the miRNAs 
that have been evaluated in our studies. Putative tumor suppres-
sor miRNAs selected as candidates for Msi1 regulation includes 
miR-34a, miR-101, miR-128, miR-137 and miR-138.30-38 A syn-
opsis of their profiling studies, mRNA targets and impact on 
biological functions is summarized in Table 1. These miRNAs 
have decreased or no expression in brain tumors, as compared to 
normal brain tissue.25 When their expression is restored in can-
cer cells these miRNAs can slow down cellular proliferation and 
promote neural differentiation; additionally, these miRNAs have 
also been linked to stem cell self-renewal.

We first studied the regulation of Msi1 by these tumor sup-
pressor miRNAs by functional analysis. The interaction between 
the miRNA and the Msi1 3' UTR is shown in Figure 1A. We 
expressed the miRNA mimics in U251 glioblastoma and Daoy 
medulloblastoma cells and evaluated its impact on Msi1 expres-
sion by RT-qPCR and western blot. Transfection efficiency was 
monitored by quantitative PCR (Fig. S1). With all five selected 
miRNAs, repression of Msi1 is seen at the protein level (Fig. 1B 
and C). Additionally, all five miRNAs were able to partially 
decrease Msi1 mRNA levels by 20 to 60% in U251 glioblastoma 
cells and 25 to 60% in Daoy medulloblastoma cells (Fig. 1D and 
E), suggesting that the regulation takes place both at translation 
and mRNA decay steps.39,40 This combined regulation could 
explain the strong effect observed at the protein level. However, 
further mechanistic studies of the miRNA action on Msi1 mRNA 
are needed to complement the end point data presented here. We 
then utilized a reporter assay to confirm that the selected miRNA 
targets the Msi1 3' UTR region.41 The Msi1 3' UTR region was 

to function as tumor suppressors; when downregulated or 
deleted in tumor cells, this event can lead to increased expres-
sion of oncogenic proteins such as Musashi1.23 We have iden-
tified several miRNAs (mir-34a, miR-101, miR-128, miR-137 
and mir-138) that affect Msi1 expression. They have been shown 
to function as tumor suppressors and to be downregulated in 
malignant tumors of the nervous system. We suggest then that 
the downregulation of these miRNAs in cancer cells could con-
tribute to an increase in Msi1 expression and subsequently to 
tumor formation.

Results and Discussion

Musashi1 expression is regulated by microRNAs. One of the 
recent developments in the study of malignant tumors of the 
nervous system is the participation of microRNAs (miRNAs). 
Each microRNA can target hundreds of mRNAs, and many 
mRNAs may be targeted by multiple microRNAs, thus creat-
ing a miRNA-mediated genetic regulatory network with complex 
topological features. In recent studies, microRNA profiling of 
malignant tumors of the nervous system had identified a specific 
subset of miRNAs being deregulated, most likely due to genomic 
rearrangements or miRNA promoter methylation.24 Several of 
these miRNAs have been later shown to function as tumor sup-
pressor miRNAs as their downregulation can lead to activation 
of oncogenic pathways.23 Interestingly, some of these microR-
NAs have also been implicated in neural stem cells and neural 
development, thus intertwining stem cell biology and tumorigen-
esis.25 Since Musashi1 is equally implicated in both processes, we 
believe that miRNAs, particularly tumor suppressor miRNAs, 
might play a role in its regulation. Moreover, the Msi1 mRNA 
has a long 3' untranslated region (1,797 nucleotides in length), 
making it an excellent candidate for miRNA regulation.26-28

Table 1. Identified Msi1-targeting tumor suppressor miRNAs

microRNA ID
Chromosomal 

Coordinates
Deregulation in Cancer

miRNA 
Targets

Biological/Cellular Processes References

hsa-miR-34a
1:9211727-
9211836 [-]

↓ in retinoblastoma, neuroblastoma, uveal 
melanoma, hepatocellular carcinoma, hema-

tological malignancies, glioblastoma, lung 
cancer, cervical carcinoma

SIRT1, 
NOTCH1, 

JAG1, FOXP1, 
E2F pathway

Cell proliferation, transcriptional 
regulation, apoptosis, histone 
modification, apoptosis, DNA 

repair

30–32, 50, 
57–68

hsa-miR-101
1:65524117-
65524191 [-]

↓ in anaplastic large cell lymphoma, gastric 
cancer, lung cancer, prostate cancer, hepa-
tocellular carcinoma, colon cancer, endo-
metrial serous carcinoma, transitional cell 

carcinoma, glioblastoma

PTGS2, EZH2, 
MAGI2, APP, 
MCL1, FOS

Cyclooxygenase production, 
apoptosis, cell proliferation, TGFβ 
production, chromatin organiza-
tion, histone modification, tran-

scriptional regulation

33, 69–80

hsa-miR-128
2:136422967-

136423048 [+]
↓ in endometrial carcinoma, prostate cancer, 

neuroblastoma, glioblastoma

FOXO1, RELN/
DCX, BMI1, 
E2F3a, BAX

Transcriptional regulation, cell 
cycle regulation, cell proliferation, 

apoptosis

34–36, 
81–84

hsa-miR-137
1:98511626-
98511727 [-]

↓ in colon cancer, head/neck squamous cell 
carcinoma, glioblastoma, oral squamous cell 

carcinoma, melanoma

MIB1, CDC42, 
MITF

Cell cycle regulation, cell prolif-
eration, neural differentiation

33, 85–89

hsa-miR-138
3:44155704-
44155802 [+]

↓ in anaplastic thyroid carcinoma, head/neck 
squamous cell carcinoma, glioblastoma

TERT, EID1, 
EZH2

Telomere maintenance, cell dif-
ferentiation

90–93

The chromosome, chromosomal coordinates, and strandedness are listed for each miRNA. Each of the studied miRNA have been shown to be down-
regulated and implicated in the pathogenesis of many different cancers targeting many different mRNAs implicated in various cancer-related cellular 
and biological processes.
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Figure 1. Putative tumor suppressor microRNAs repress Musashi1 at the 3' untranslated region. (A) Predicted Msi1 mRNA:miRNA binding interac-
tions. The region of the Msi1 3' UTR (light gray) that corresponds to the miRNA binding site is shown, with the position of the first shown nucleotide 
numbered above (5' to 3' direction). The miRNA (black) is shown in the 3' to 5' direction. Watson Crick base pairing interaction is defined between the 
mRNA and the miRNA seed region with vertical lines. U251 glioblastoma cells (B) and Daoy medulloblastoma cells (C) were transfected with miRNA 
mimics and Musashi1 protein expression was assessed by western blotting. A scrambled negative control miRNA (Control miRNA) was also transfected 
as a negative control for miRNA function. β-actin was included as an endogenous loading control. U251 glioblastoma cells (D) and Daoy medullo-
blastoma cells (E) were transfected with miRNA mimics and Musashi1 messenger RNA levels was assessed by RT-qPCR. A scrambled negative control 
miRNA (Control miRNA) was also transfected as a negative control for miRNA function. Data was normalized using the 2-ΔΔCt methodology and normal-
ized to ACTB mRNA levels. (F) HeLa cells were cotransfected with a Msi1 3' UTR luciferase reporter vector with putative miRNAs mimics and luminen-
scence was measured. The reporter by itself (Reporter Only) and the reporter cotransfected with a scrambled negative control miRNA (Control miRNA) 
were included as a negative control. Experiments were performed in triplicate. Data was analyzed with Student t-test, comparing mRNA levels of the 
miRNA mimic transfection to that of the control miRNA expression level. The mean and standard error of measurement is displayed.
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of the selected tumor suppressor miRNAs via the predicted tar-
gets sites (Fig. 2). The only exception was miR-138. The deletion 
of the predicted site caused only a partial effect on miRNA-
mediated regulation. We later observed that the luciferase gene 
(luc2) contains putative binding sites for miR-138 that may mask 
the results of our deletion analysis. Two 6-mer miR-138 binding 

cloned downstream of a destabilized luciferase gene containing a 
PEST sequence.42 The reporter assay indicated that all the miR-
NAs were able to repress the expression of luciferase (Fig. 1F).

Furthermore, deletion of the putative miRNA binding sites 
in the luciferase:UTR vector rendered the UTR refractory to 
repression by the miRNA mimic, further confirming the action 

Figure 2. Putative Msi1-targeted tumor suppressor miRNAs act on the Msi1 3' UTR at predicted miRNA binding sites. Deletions of Target Scan Human 
predicted sites on the luciferase Msi1 3' untranslated region construct were performed using a high-fidelity PCR-based procedure. Cotransfections 
of luciferase:Msi1 3' UTR construct and miRNA mimics were performed in HeLa cells using Thermo Scientific Dharmafect Duo transfection reagent. A 
control miRNA was used as a negative control. Deletion of predicted miRNA sites abolished the miRNA-mediated regulation as reflected by luciferase 
results. The only exception was miR-138, which was still of capable of decreasing the expression of its cognate 3' UTR deletion construct. Experiments 
were performed in triplicate. Data was analyzed with Student t-test, comparing the mutated UTR luciferase expression to that of the wild type UTR. 
The mean and standard error of measurement is displayed.
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the mRNA (Fig. 4B) and protein level (Fig. 4C). Consequently, 
we hypothesize that the miRNAs we selected to analyze should 
have a higher expression after differentiation to suppress protein 
output of Msi1 after differentiation. Using quantitative real-time 
PCR, we observe an increase in miR-34a, miR-101, miR-137 and 
miR-138 but not miR-128 (Fig. 4D) ranging from a 2- to 5-fold 
over undifferentiated cells.

Breast cancer and medulloblastoma cells maintained under 
conditions that favor spheroid formation and consequently, the 
expansion of cells with stem-like characteristics, show higher 
Msi1 expression when compared to cells grown as monolay-
ers.3,47 Similarly, in two glioblastoma multiforme lines established 
from patient samples,48 we observed a 2- to 3-fold increase in 
Msi1 mRNA levels when cells were grown as tumorspheroids 
(Fig.  5A). Interestingly, we observed that miR-34a, miR-101, 
miR-128 and miR-137 but not miR-138 have an opposite pattern 
of expression, having a higher expression in monolayers than in 
the tumorspheres (Fig. 5B). We then suggest that a decrease in 
expression of miRNAs targeting Msi1 in cancer cells with stem-
like characteristics allows for a higher expression of Msi1.

To determine if Msi1 is required for the proliferation of glio-
blastoma tumorspheroids, we created a stable cell line express-
ing a short hairpin RNA directed against Msi1. A control line 
was created with a non-silencing shRNA. Forty-eight hours after 
plating, cells were counted. Msi1 knockdown cells showed ~50% 
reduction in growth when compared to control, suggesting that 
Msi1 is a major contributor of “cancer stem cell” proliferation in 
glioblastoma (Fig. 5C). We then explored the effects of the miR-
NAs on glioblastoma tumorspheroid proliferation. In all cases, 
transfection of miRNA mimics decreased cell proliferation; 
miR-34a had the most profound effect, reducing proliferation by 
approximately 60%, while miR-101 only reduced cell prolifera-
tion by approximately 27% (Fig. 5D).

Msi1 transgenic expression partially suppresses miRNA-
induced inhibition of cell proliferation. To ascertain that the 
tumor suppressing miRNAs act, in part, through Musashi1 regu-
lation, we performed a rescue experiment in U251 glioblastoma 
cells. A stable U251 glioblastoma cell line containing a Musashi1 
transgene was established. The vector utilized to create the stable 
cell line contains a constitutive elongation factor 1α promoter 
and lacks any Msi1-specific regulatory elements such as the 3' 
UTR, allowing the ectopic expression of Msi1 to be “immune” 
to any miRNA-mediated regulation. A complementary U251 cell 
line overexpressing green fluorescent protein was used as nega-
tive control. Quantitative RT-PCR confirms that the cell line 
express the Msi1 transgene (Fig. S4). When miRNA mimics 
were expressed, cell proliferation was reduced in the control GFP 
cell line (Fig. 6). Although, Msi1 transgenic expression did not 
fully reinstate the wild type levels of proliferation, the impact 
of miRNA mimics on cell proliferation was definitely less pro-
nounced (Fig. 6). The partial recovery is explained based on the 
repression of other putative miRNA targets, some of which have 
been previously studied (Table 1).

While many studies have identified putative tumor suppress-
ing and oncogenic miRNAs in malignant nervous system tumors, 
fewer studies have identified and characterized targets of these 

sites were identified in the open reading frame for the luc2 gene. 
To determine that miR-138 is able to target the luciferase open 
reading frame, its mimic was cotransfected with the pGL4 vec-
tor, which contains a constitutively-driven luc2 gene and lacks a 
3'UTR region. As predicted, repression of luciferase expression 
was observed (Fig. S2). Regardless the result of the luciferase 
experiments, we are confident that Msi1 is a target for miR-138 as 
evident from the profound impact of miR-138 on the endogenous 
Msi1 mRNA and protein levels (Fig. 1B–E).

To evaluate if the different deletion constructs were not del-
eterious to the function of the 3' UTR, each deletion construct 
was cotransfected with two noncognate miRNAs; in all cases, 
the noncognate miRNAs were able to repress the luciferase dele-
tion construct, signifying that the deletion did not affect the fea-
tures of the 3' UTR (Fig. S3).

Evolutionary conservation of miRNA sites in the Msi1 3' 
UTR region. We used the MULTIZ 44-way vertebrate genome 
alignment referenced on human hg18 to analyze conservation 
of the miRNA target sites in the 3' UTR of Msi1.43 Although 
the Msi1 coding sequence shows conservation through all verte-
brates, portions of the human 3' UTR are absent outside mam-
mals. Conservation within aligned sequences of the 3' UTR is 
quite high. A portion at the 3' terminus of the annotated RefSeq 
transcript for Msi1, covering approximately 580 bases, is con-
served through mammals, birds and reptiles, while only very 
small parts of this segment appear to be conserved in some fish. 
Among the 5 target sites we examined, only miR-34a and miR-
137 sites are within these 580 bases. The seed segment of the 
miR-34a target site is only conserved through primates (Fig. 3). 
The miR-137 seed site is conserved perfectly in all species but 
zebrafish (Fig. 3). The miR-138, miR-128 and miR-101 sites 
appear not to exist outside mammals. The nucleotide-level con-
servation in these sites shows very high conservation, with very 
few substitutions among mammals.

miRNAs and Msi1 have opposing patterns of expression. 
In neural stem cells, Musashi1 is highly expressed while it is 
barely detected in mature neurons.13 These findings suggest that 
Musashi1 plays important roles in maintaining neural stem cell 
identity and that its expression needs to be downregulated to 
allow for neuronal differentiation.44 However, it is unclear how 
Msi1 is regulated during this process. Recent studies in miR-
NAs and nervous system development suggest that miRNAs play 
vital roles in maintaining neural stem cell identity and lineage 
specification.45 Therefore, we suggest that the miRNAs in this 
study can contribute to a downregulation of Msi1 during cell dif-
ferentiation. The dual roles of these tumor suppressor miRNAs 
implies an overlap between development and cancer.25

We utilized a neuroblastic differentiation assay to monitor 
changes in both Msi1 and miRNA expression. In this assay, 
SK-N-BE neuroblastoma cells, which display high Msi1 expres-
sion, can be differentiated along the neuronal lineage using 
all-trans retinoic acid for a period of one week.46 On gross visual-
ization, cell morphology changes are evident by the development 
of neuritic processes that extends from the cell body when induced 
with all-trans retinoic acid (Fig. 4A). The decrease in Msi1 expres-
sion after all-trans retinoic acid-induced differentiation is seen at 
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Figure 3. Multiple-species alignments of miRNA target sites in the Msi1 3' UTR, including flanking sequence. Alignments include only species for 
which orthologous sequence exists at corresponding sites.
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RNA-binding proteins by miRNAs is a rational mechanism by 
which miRNAs can indirectly regulate the expression of down-
stream target mRNAs in addition to its direct mRNA targets, 
thus broadly influencing the biology, behavior and physiology of 
a cancer cell. Moreover, the important role of miRNAs in genetic 

miRNAs. In our study, we suggest that the oncogenic RNA-
binding protein Musashi1 is highly regulated by a combinatorial 
group of tumor suppressor miRNAs in malignant nervous system 
tumors, a connection of multiple miRNAs:single target phenom-
enon that is only beginning to be appreciated.49 Regulation of 

Figure 4. All-trans retinoic acid-mediated induction of neuronal differentiation of SK-N-BE neuroblastoma cells causes downregulation of Msi1 expres-
sion and concomitant increase in miRNA expression. (A) SK-N-BE cells were differentiatied with 10 uM of all-trans retinoic acid for a period of 6 days. 
On visual inspection, potent formation of neuritic processes are seen after six days of differentiation induction with all-trans retinoic acid. After 6 days 
of differentiation with all-trans retinoic acid, a downregulation of Msi1 expression is observed at the mRNA level (B) and at the protein level (C). The 
ACTB mRNA was used for normalization when using the 2-ΔΔCt method for mRNA relative quantification and β-actin was included as an endogenous 
protein loading control. (D) After differentiation, miRNA expression increased when measured with miRNA relative quantification (2-ΔΔCt method) using 
the RNU48 C/D box snoRNA as an endogenous control. Experiments were performed in triplicate. Data was analyzed with Student t-test, comparing 
the expression levels of either Msi1 or the miRNAs at time zero to that after 6 days of differentiation. The mean and standard error of measurement is 
displayed.
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For instance, in our study, we demonstrate that Msi1 is a target 
of miR-34a. Knowing that Notch-1 is also a target of miR-34a50 
and that Msi1 is involved in the Notch-1 and Hes-1 expression 
via its repressive function on Numb, we could speculate that 

regulatory networks has been underscored by the realization of 
miRNA-mediated networks in managing noise and robustness in 
an ever-changing environment, organizing developmental signals 
and potentiating oncogenic transformation.

Figure 5. Primary glioblastoma cell proliferation is regulated by Msi1 through a reduction of miRNA expression. (A) When primary glioblastoma cells 
are grown in a stem cell-enriching, free-floating spheroid formation in serum-less Neurobasal media supplemented with basic fibroblast growth 
factor and epidermal growth factor, Msi1 mRNA expression levels increase relative to levels in primary glioblastoma cells growth in a serum-supple-
mented, adherent, monolayer condition. Expression was assessed in two primary glioblastoma samples. The ACTB mRNA was used for normalization 
when using the 2-ΔΔCt method for mRNA relative quantification. A horizontal line crossing the ordinate at a value of 1 indicates the relative expression 
level in the monolayer culture. (B) Putative Msi1-targeting tumor suppressor miRNAs expression decrease when primary glioblastoma cells are grown 
in a neurophere condition as compared to a monolayer culture with the exception of miR-138. The RNU48 C/D box small nucleolar RNA was used as 
an endogenous control when using the 2-ΔΔCt method for miRNA relative quantification. Experiments were performed in triplicate. Data was analyzed 
with Student t-test, comparing expression levels in the spheroid conditions to that of the monolayer. The mean and standard error of measurement 
is displayed. A horizontal line crossing the ordinate at a value of 1 indicates the relative expression level in the monolayer culture. (C) Stable silencing 
of Msi1 was prepared in primary glioblastoma cells after transduction of a lentivirus carrying a short hairpin RNA expression construct and selection 
using 3 ug/mL of puromycin. A control cell line was prepared with a non-silencing shRNA. 5 x 105 cells were plated in a 24-well plate and counted 
48 hours later. A decrease of cell proliferation was observed in the silenced Msi1 cell line, as determined by cell counting. (D) miRNA mimics were 
transfected into the primary glioblastoma cell line and cell proliferation was monitored 48 hours later. With all five miRNA mimics, a decrease in 
cell proliferation was observed in the primary glioblastoma cell line, as measured by MTS assay. Experiments were performed in triplicate. Data was 
analyzed with Student t-test, comparing proliferation in the miRNA mimic experiment to that of the control miRNA. The mean and standard error of 
measurement is displayed.
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microscope (Carl Zeiss Microimaging, LLC, Thornwood, NY) 
equipped with a 63x oil immersion objective.

Transfection. U251 glioblastoma and Daoy medulloblas-
toma cells were reverse transfected with miRNA mimics with 
Lipofectamine RNAiMAX transfection reagent (Invitrogen). For 
luciferase assays, HeLa cells were co-transfected with the pSGG-
Msi1 reporter vector and miRNA mimic using DharmaFECT 

miR-34a may act in a coherent type I feed forward regulatory 
network (Fig. 7A) in the Notch signaling pathway via Msi1 and 
Notch-1 (Fig. 7B).3,19,21,22,47,51-54 Finally, in addition to target 
identification, our study offered insight into potential microRNA 
therapeutic replacement modalities for the interventional treat-
ment of malignant nervous system tumors through the suppres-
sion of the Musashi1 RNA-binding protein.55 

Material and Methods

Musashi1 untranslated region conservation analysis. Cross-
species conservation was taken from full-genome align-
ments of 44 vertebrates, as available from the UCSC Genome 
Bioinformatics group; the alignment was constructed using the 
MULTIZ algorithm.43

Cell culture. SK-N-BE neuroblastoma, Daoy medulloblas-
toma, U251 glioblastoma and HeLa cervical adenocarcinoma 
cell lines were obtained from American Type Culture Collection 
(American Type Culture Collection, Manassas, VA). SK-N-BE, 
U251 and Daoy cell lines were propagated in Dulbecco’s 
Modified Essential Medium (Thermo Scientific, Rockford, IL), 
which contained 10% fetal bovine serum, penicillin and strep-
tomycin. HeLa cells were maintained in culture in Minimum 
Essential Medium (Thermo Scientific) supplemented with 10% 
fetal bovine serum, penicillin and streptomycin. Primary glio-
blastoma tumorspheres were obtained from patient samples at 
the Cancer Therapy & Research Center at the University of 
Texas Health Science Center at San Antonio and propagated in 
neurobasal media containing L-glutamine, N2 supplement, B27 
supplement, heparin, epidermal growth factor (EGF) (Peprotech, 
Inc., Rocky Hill, NJ) and basic fibroblast growth factor (bFGF) 
(Peprotech, Inc.). For growth of primary glioblastoma cells as 
monolayers, the cells were cultured in the presence of Dulbecco’s 
Modified Essential Medium with 10% FBS and pen/strep.

For the establishment of Msi1 ectopic expression U251 cell 
line, the Msi1 coding region was cloned into pEF1/Myc-His A 
mammalian expression vector (Invitrogen, Carlsbad, CA). GFP 
was cloned as a negative control vector. pEF1/Myc-His-Msi1 and 
pEF1/Myc-His-GFP were transfected into U251 cells using the 
Lipofectamine 2000 transfection reagent (Invitrogen). G418 
(800 ug/mL) was used as a selection agent. The cells were prop-
agated for 2 weeks and quantitative RT-PCR used to evaluate 
transgenic expression.

Stable primary glioblastoma cell lines expressing the Msi1 short 
hairpin RNA (shRNA) were created utilizing lentiviral transduc-
tion. A control non-silencing shRNA directed is used as a negative 
control. Lentiviruses harboring a shRNA expression cassette was 
obtained from Open Biosystems (Open Biosystems, Huntsville, 
AL) and lentiviral particles were prepared according to manu-
facturers’ protocol. After transduction, stable transformants were 
selected using 3 ug/mL of puromycin (Invitrogen) in neurobasal 
media supplemented with L-glutamine, N2 supplement, B27 sup-
plement, heparin, epidermal growth factor (EGF) (Peprotech, Inc.) 
and basic fibroblast growth factor (bFGF) (Peprotech, Inc.).

Microscopy. Microscopic images of cell morphology 
were acquired using a Zeiss Axiovert 200 M epifluorescence 

Figure 6. Complementation by ectopically expressed Msi1 partially re-
verses cell proliferation suppression induced by miRNA mimics. miRNA 
mimics were transfected in the GFP and Msi1 overexpressing cell lines. 
Cell growth was measured by the MTS assay 48 hours post-transfection. 
The effect on growth suppression was partially reversed in the Msi1 
overexpressing stable U251 cell line. A control miRNA was included as a 
negative control for miRNA transfection. Student t-test was used to per-
form the statistical analysis. Experiments were performed in triplicate. 
The mean and standard error of measurement is displayed.

Figure 7. miR-34a may act in a coherent type I feed forward module in 
the Notch signaling pathway. (A) Schematic of a coherent type I feed 
forward network motif. (B) Hypothetical coherent type I feed forward 
network motif involving miR-34a, Msi1 and the Notch signaling pathway.
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2.0.1 software package (Applied Biosystems) and analyzed using 
the 2-ΔΔCt method using the RNU48 C/D box small nucleolar 
RNA gene as an endogenous control for miRNAs or β-actin as 
an endogenous control for Msi1 mRNA.

Western blotting. U251 glioblastoma and Daoy medulloblas-
toma cells were transfected in 100 mm culture plates for Musashi1 
protein analysis. After 48 h of incubation post-transfection, cells 
were scraped from the plate and pelleted. After centrifugation, 
cells were resuspended and sonicated in 2x SDS Laemmli sample 
buffer. Cell lysates were ran on a Tris-glycine-SDS PAGE gel that 
has a 4% stacking gel and 10% resolving gel. After electropho-
resis, a semi-dry transfer procedure was carried out onto a nitro-
cellulose membrane. After transfer, the membrane was blocked in 
Tris-buffered saline with Tween 20 and 5% skim milk. The mem-
brane was probed with either a rabbit monoclonal anti-Musashi1 
antibody (Abcam, Cambridge, MA) or mouse monoclonal anti-
β-actin antibody (Abcam). HRP-conjugated goat anti-rabbit anti-
body (Santa Cruz Biotechology, Santa Cruz, CA) was used as a 
secondary antibody for Musashi1 or HRP-conjugated goat anti-
mouse antibody (Zymed Laboratories, Carlsbad, CA) was used as 
a secondary antibody for β-actin. Electrochemiluminescence was 
used to detect the Musashi1 or β-actin protein.

MTS cellular proliferation assay. Stable transgenic Msi1 
expressing (or transgenic GFP expressing negative control) 
U251 glioblastoma cells were transfected with miRNA mim-
ics using RNAiMAX transfection reagent (Invitrogen) in a 96 
well plate. After 2 days incubation, cell proliferation was mea-
sured with the CellTiter 96 AQueous Non-Radioactive Cell 
Proliferation Assay (MTS assay) (Promega). After incubation 
with the assay reagent for 1 hour, absorbance at 490 nm was 
measured on a Synergy HT Multi-Mode Microplate Reader 
(Biotek, Winooski, VT).

Statistical analysis. Student’s t-test was performed on all 
analysis, comparing the control miRNA or siRNA experiment 
to that of the miRNA mimic or Msi1 siRNA data. p-values less 
than 0.05 were considered statistically significant. All data was 
performed in triplicate and the data is presented as the mean ± 
standard error of measurement.
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Supplemental materials can be found at:
www.landesbioscience.com/journals/rnabiology/article/16151

Duo transfection reagent (Thermo Fisher Scientific, Dharmacon 
Products, Lafayette, CO).

Cell differentiation. SK-N-BE cells were plated at a density of 
1 x 105 cells per 100 mm culture dish. Of all-trans retinoic acid, 
ten uM solubilized in 200-proof ethanol, were added to each cul-
ture dish for the specified amount of time. The media and all-
trans retinoic acid were changed every 24 h.

Plasmids and mutagenesis. pSGG-Msi1 3' untranslated 
region chimeric reporter vector were obtained from Switchgear 
Genomics (Menlo Park, CA). Deletion of putative miRNA bind-
ing sites was performed using a optimized high fidelity PCR-
based procedure described by L.O.F. Penalva and J. Valcárcel 
[Technical Tips Online (tto.trends.com)].56

Luciferase assays. Luciferase assays were performed accord-
ing to Boutz et al.,41 7.5 x 103 cells were plated 24 hours pri-
ors to transfection in each well in a 96-well cluster plate. 100 
ng of pSGG-Msi1 3' UTR reporter vector was mixed with 10 
pmol of the miRNA mimic in OptiMEM (Invitrogen). 0.15 
uL of DharmaFECT Duo transfection reagent (Thermo Fisher 
Scientific, Dharmacon Products) was added. After formation of 
the nucleic acid:lipid complex, the transfection solution was over-
laid onto the previously plated HeLa cells. After incubation for 24 
hours, the HeLa cell extract was prepared using the Reporter Lysis 
Buffer from Promega (Madison, WI). The 100 uL of Luciferase 
Assay Reagent was added to 20 uL of cell lysate, and the lumines-
cence was read on a Berthold Technologies AutoLumat LB 953 
Multi-Tube luminometer (Berthold Technologies, Oak Ridge, 
TN). As a control procedure, potential variation in the luciferase 
assay was measured by 6 separate transfection preparations of the 
reporter vector and a control miRNA; we did not observe any 
remarkable variation in luciferase expression (Fig. S5).

RNA preparation and qRT-PCR. Total RNA was extracted 
using the TRIzol reagent (Invitrogen). Briefly, TRIzol was added 
to the cells for lysis and dissociation of any RNA:protein com-
plexes. Chloroform was added for phase separation. Total RNA, 
located in the aqueous phase, was precipitated using isopropyl 
alcohol. After centrifugation, the RNA pellet was washed in 75% 
ethanol and resuspended in nuclease-free water.

Reverse transcription of miRNAs was performed using 
the TaqMan Reverse Transcription Kit (Applied Biosystems, 
Carlsbad, CA) and the miRNA gene-specific reverse primer 
from the TaqMan MicroRNA Assay (Applied Biosystems). 
Reverse transcription of messenger RNAs was performed using 
the High Capacity cDNA Reverse Transcription kit (Applied 
Biosystems) with random priming. After reverse transcription, 
quantitative PCR was performed using the TaqMan primer/
probe set in the TaqMan MicroRNA Assay for miRNA analysis 
or Gene Expression Assay (Applied Biosystems) in TaqMan Gene 
Expression Master Mix (Applied Biosystems) for mRNA analy-
sis. Real-time PCRs were performed on a 7500 Real Time PCR 
System (Applied Biosystems). Data was acquired using the SDS 
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