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Abstract DNA methylation is a chemical modification of the bases in genomes. This modification, most frequently found
at CpG dinucleotides in eukaryotes, has been identified as having multiple critical functions in broad and diverse species of
animals and plants, while mysteriously appears to be lacking from several other well-studied species. DNA methylation has
well known and important roles in genome stability and defense, its pattern change highly correlates with gene regulation.
Much evidence has linked abnormal DNA methylation to human diseases. Most prominently, aberrant DNA methylation is
a common feature of cancer genomes. Elucidating the precise functions of DNA methylation therefore has great biomedical
significance. Here we provide an update on large-scale experimental technologies for detecting DNA methylation on a
genomic scale. We also discuss new prospect and challenges that computational biologist will face when analyzing DNA

methylation data.
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1 Introduction

Our capacity for collecting data about DNA methy-
lation has surged forward alongside recent advances in
sequencing technology (for more details on advances
in sequencing technology, see the article “New gener-
ations: Sequencing machines and their computational
challenges” by Shwartz and Waterman!'). Making
sense of DNA methylation data presents many chal-
lenges for computational biologists who must design
novel algorithmic and statistical methods for analyzing
the data. In this article we review the biology of DNA
methylation, explain the experimental technologies for
collecting this data, and then review the computational
problems associated with analyzing DNA methylation
data.

2 Background

DNA methylation was first postulated over 30 years
ago to be a heritable modification capable of affect-
ing gene expression!?3l. The addition of a methyl
group (-CHs) to the cytosine base (mC) does not al-
ter the primary DNA sequence and is therefore consi-
dered to be an epigenetic modification, literally mean-
ing to act “on top of” or “in addition” to genetics.
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Three DNA methyltransferase (Dnmtl, Dnmt3a and
Dnmt3b) are required for the establishment and main-
tenance of DNA methylation patterns!* and two ad-
ditional enzymes (Dnmt2 and Dnmt3L) may also have
more specialized but related functions!®’. Genomes in
different cell types have different epigenetic codes writ-
ten at least partially in patterns of DNA methylation
on top of a common underlying genetic code giving rise
different cellular phenotypes.

Epigenetic gene-silencing (e.g., methylation of the
gene promoter) can be equivalent to a null mutation
phenotypically. DNA methylation may have developed
as a host defense against expression of parasitic DNA
insertions(® and it has also been used as a weapon me-
diating sexual conflict(7].

Since mammalian genomic DNA methylation exi-
sts primarily as mCpG and 5-methylcytosine is prone
to spontaneous deamination and point mutation to
thyminel®!, CpG dinucleotides are consequently de-
pleted almost 5-fold in the genome during human
evolution!.  Although 5-mCpG represents only 1%
bases in the human genome, CpG dinucleotide is in-
volved in 1/3 of point mutations causing human genetic
disorders!'”) and a similar proportion of SNPs detected
in coding regions!*!!. DNA methylation changes in can-
cer appear to be 10~100 times more frequent events
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than genetic mutations('?).

Due to its importance, the Human Reference
Epigenome Project was initiated in Europe in 2003,
aiming to “identify, catalog and interpret genome-
wide DNA methylation patterns of all human genes
in all major tissues”'3l. In 2009, the NIH Roadmap
Initiative started supporting large-scale Human Ref-
erence Epigenome Mapping efforts that will produce
epigenomic maps (including DNA methylation, His-
tone modifications, ncRNA transcripts) in many cell
types[14].

3 Experimental Methods

Biologists seeking to investigate DNA methylation
have several options available for extracting the methy-
lation data. These technologies depend on specific char-
acteristics of methylated and unmethylated cytosines
that can be used to positively identify the presence
of the modification. Here we describe the three ma-
jor classes of experimental methods for detecting DNA
methylation. While each of these general methods can
be implemented in several ways, when coupled with
second-generation sequencing technologies they become
especially powerful.

3.1 Methylation-Sensitive Restriction

Restriction enzymes recognize specific DNA se-
quences and cut DNA molecules at or near those sites.
Certain restriction enzymes have been discovered to cut
DNA at CpG sites in a methylation sensitive manner.
Enzymes like McrBC recognize sites with methylated
cytosines'®.  Others, including Hpall and Notl, re-
cognize unmethylated sites!'%17). Digesting DNA with
these enzymes (alone or in combinations) can yield
much information about methylation. Early experi-
ments were able to quantify overall levels of genomic
methylation by restriction with methylation-sensitive
enzymes and then measuring the distribution of sizes
for the resulting fragments. A genome with very little
DNA methylation would result in large fragments when
cut with an enzyme that recognizes methylated sites.
Restriction-based methods have also been adapted to
provide information about localization of DNA methy-
lation, for example when combined with microarrays to
identify which genomic fragments have been targeted
for restriction['8].

3.2 Immunoprecipitation

Antibodies that detect either methylated cytosines
or methyl-CpG-binding domain (MBD) proteins can be
used to detect the presence of methylated cytosines!'?.
Immunoprecipitation with one of these antibodies
results in a sample enriched in DNA fragments

containing methylated cytosines. Then the sample is
interrogated, either with an array-based method or
with direct sequencing (e.g., using a high-throughput
second-generation sequencing technology). As with
methods based on methylation-sensitive restriction,
immunoprecipitation-based methods have limited re-
solution. Sophisticated analytical methods have been
designed to help increase the resolution of immunopre-

cipitation methods?9.

3.3 Bisulfite Treatment

Treatment of DNA with sodium bisulfite has the ef-
fect of converting cytosine, through deamination, to
uracil. If the treatment is followed by PCR amplifi-
cation, those uracil bases are converted into thymine.
Methylated cytosines, however, are left unconverted.
If some method is then applied to interrogate the se-
quences, identifying cytosines at genomic CpG posi-
tions indicates methylation, while identifying thymine
at the same position indicates lack of methylation in
the molecule.

The sample interrogation can be done in a variety
of ways, including PCR[Y, array hybridization®? and
even mass-spec!?? (C' and U yield different mass sig-
nals). However, the combination of DNA sequencing
with bisulfite treatment, termed bisulfite sequencing
(BS-seq), has been especially powerful. When coupled
with second-generation sequencing, it becomes feasible
to conduct BS-seq experiments on entire mammalian
genomes. The main tradeoff in using second-generation
sequencing for BS-seq is between the length of the reads
and the accuracy of those reads: short reads will gen-
erally contain fewer CpGs, and therefore analysis that
seeks to understand relationships between CpGs in the
same chromosome will be more difficult (see Section 8).

There are several complications in bisulfite sequen-
cing. First, DNA methylation does not survive PCR,
which constrains the amount of starting DNA and
makes it difficult to conduct DNA methylation on those
important but rare cells of early development or cancer
stem cells. The main tradeoff is the between the degree
of bisulfite conversion and the loss of DNA observed
due to the harshness of the bisulfite treatment.

Currently the only technology that can produce data
about methylation of individual CpGs is bisulfite se-
quencing; regional levels of DNA methylation can also
be obtained by restriction or ChIP-based methods. In
later sections we will generally assume that the bisulfite
sequencing method has produced the DNA methylation
data.

4 Mapping Bisulfite Treated Reads

The first technical challenge to emerge from the cou-
pling of bisulfite sequencing with short-read technology



28

SSTR4 (chr20:22, 963, 666-22, 964, 929)

245- Normal Skin Cell

358- Cancer Cell Line

I R —

J. Comput. Sci. & Technol., Jan. 2010, Vol.25, No.1

0 10 20 30 40 50

60

T T T

70 8 90 100 110 120 130

Fig.1. Methylation profile from bisulfite sequencing through a CpG island covering the T'SS and first exon of the SSTR4 gene in the

human assembly hgl8. Two profiles are presented: one for a normal skin cell line and the other for a breast cancer cell line. Each plot

shows the counts of methylated (yellow) and unmethylated (blue) reads mapping over each CpG (top; normalized frequencies appear

below, where grey indicates 90% confidence interval). A distinct boundary is evident in the normal skin cell line, but this boundary

appears to have been lost in the cancer cell line.

was the need for read mapping algorithms capable of
dealing with the C' — T conversion. To identify the
genomic origin of reads produced in bisulfite sequenc-
ing experiments requires mapping those reads back to
a reference genome without penalizing when a T in a
read aligns over a genomic C'. This relation is not sym-
metric: Cs observed in reads must have originated from
a genomic C, and therefore should be penalized when
mapping over a genomic 7. The read mapping prob-
lem in general is a difficult approximate string matching
problem?* and the T/C wild-card required of bisul-
fite sequencing makes the problem substantially more
difficult. One approach is to convert all Cs in reads
and all Cs in the reference genome to 7', and then to
map all reads using only a 3-letter alphabet[?®/. The
first problem with the 3-letter approach is that the loss
of information makes most mapping approaches slower.
Mapping algorithms often require that some positions
in the reads match the reference genome exactly in or-
der for a full comparison to be computed between the
read and the corresponding position in the reference
genome. FEfficiency of this approach depends on the
complexity of the underlying sequence: lower complexi-
ty increases the number of exact matches during the
initial stage because a random position is more likely
to match.

The second problem is that any additional mapping
specificity in those remaining C's will not be used if the
3-letter alphabet is assumed. Downstream analysis in
bisulfite sequencing experiments usually requires that
reads are mapped to unique locations in the genome.
Substantial portions of mammalian genomes contain se-
quences that are exactly repeated at some other loca-
tion in the genome, and reads mapping to any copy
of such a repeat will necessarily map equally well to
all copies. Those reads are called ambiguously map-
ping, and cannot usually be used in bisulfite sequenc-
ing experiments. This problem is made much worse
by the loss of complexity resulting from bisulfite treat-
ment, and any cytosines that survived the bisulfite
treatment can be used to resolve ambiguities in the
mapping locations of reads. One subtle consideration
is in using unconverted cytosines at C' positions to as-
sist in mapping. If reads indicating a greater number
of methylated CpGs (i.e., having more C's at positions
corresponding to CpG dinucleotides) are more likely to
be mapped uniquely, then estimating the frequency of
methylation based on mapped reads becomes problem-
atic. For mapping mCpG, one solution is to allow C's
in reads to map over T's in the genome only if the ge-
nomic 7T is part of a TpG dinucleotide. With each ad-
ditional wild-card rule, the mapping process becomes
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more complex and inevitably less efficient.

In addition to the T'/C wildcard, certain proto-
cols will also have sequencing adaptors attached to
strands complementary to those that underwent bisul-
fite treatment26-27 for example if adaptors are added
following bisulfite treatment. Following bisulfite treat-
ment, use of PCR amplification results in one strand of
DNA having those Gs complementary to unmethylated
C's converted into As. In these cases, each read will ei-
ther require mapping while assuming the T'/C wild-card
or and A/G wild-card — with these two cases being ex-
clusive for a given read.

We developed the RMAPBS algorithm[?8! to imple-
ment the wild-card matching and to leverage randomly
unconverted cytosines while not biasing mappability
towards a particular methylation state. At present
these wild-card mapping strategies have yet to be im-
plemented using the most efficient mapping strategies
based on highly-compressed representations for the re-
ference genomel29-30],

Non-CpG methylation has also been reported in hu-
man cells in a recent Human Reference Epigenome
Mapping effort, it tends to occur in stem cells and
in non-genic regions, especially in many enhancer
regionsl®!l.  Mapping such non-CpG methylation is
more challenging both because of less read depth or co-
verage and because of more difficulties in computational
techniques caused by the loss of denucleotide constraint.

5 Determining Methylation State

Since most of methylation in mammals occur in CpG
dinucleotides, we will mainly discuss mCpG detection.
At any given instant, an individual cytosine will either
be methylated or not, and at the level of individual
DNA molecules methylation of a cytosine is a Boolean
variable. Under some extremely simplifying assump-
tions, the most basic question we can ask from DNA
methylation data is whether or not a particular CpG is
methylated. If we are working with bisulfite sequenc-
ing data, then a methylated CpG would be identified
with unconverted cytosines in reads mapping over that
position. The reality is not quite so simple, and noise
in the data (mapping errors, sequencing errors, incom-
plete bisulfite conversion) can introduce errors, so that
a methylated cytosine may have both C’s and T’s map-
ping over it. Naturally we would conclude that a par-
ticular CpG is methylated if a great majority of the
relevant reads indicate methylation. We then require
some method of determining when sufficient informa-
tion is available (i.e., enough informative reads) to make
a conclusion about whether or not a CpG is methylated.
The statistical problem of determining whether or not
a CpG is methylated, when there might be noise in the

system, is similar to the problem of identifying single
nucleotide polymorphisms (SNPs). In reality it will not
often make sense to assume that cytosine methylation is
a Boolean variable: the biological sample being studied
may contain some intermediate proportion of molecules
with methylation at a particular CpG, and the appro-
priate questions concern estimates of this proportion
and our confidence in those estimates. When a suffi-
cient number of reads is available, we may assume that
the methylation states observed in those reads, for any
given CpG, follow a binomial distribution. Confidence
intervals on the binomial can then be used to estimate
our confidence in the methylation proportion at any
given CpG2,

There remain substantial challenges associated with
this assignment of methylation levels to either indi-
vidual CpGs or genomic regions. In the near-term,
genome-wide DNA methylation projects in mammals
will not produce enough data for simple methods (such
as Binomial confidence intervals mentioned above) to
produce accurate results. To get the most useful in-
formation from low-coverage methylation profiles will
require more sophisticated models that can be trained
on a few high-coverage methylomes. We know that
CpG methylation is generally autocorrelated along
genomes®3¥ and we also know that sequence context
influences CpG methylation®¥). Such prior information
can be incorporated into models, for example as priors
in Bayesian models, and can be leveraged to help un-
derstand lower-coverage methylomes. In general, any
methods that can be applied to infer methylation sta-
tus from less data can help drive down the cost of ex-
periments and are highly valuable.

6 Features of Methylation Profiles

As indicated in Section 2, in mammals DNA methy-
lation accumulates de novo beginning at the earliest
stages of development, and continues through adult-
hood. Certain genomic regions are differentially methy-
lated between tissues, which suggests some information
encoded in the genome to guide methylation to those
loci. A fundamental biological problem is to identify
those factors controlling methylation in these differen-
tially methylated regions (DMRs). Taking the critical
steps towards unlocking these mysteries first requires
accurate computational methods for identifying those
regions that are differentially methylated between two
datasets.

It is also well known that DNA methylation spreads
along the genome, which has been attributed to the pro-
cessivity of the methyltransferase enzymes®®. Without
control on this spreading behavior, methylation might
continue through regions for which proper function
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depends on lack of methylation. Fortunately methyla-
tion seems not to spread past particular regions which
behave as boundaries. Currently there is very little
understanding of these boundaries: we know very lit-
tle about where these boundaries are, let alone the
mechanisms of how they are specified and maintained.
Current experimental projects to produce full-genome
methylation profiles will eventually provide the data
needed for detailed examinations of methylation boun-
daries. However, making use of this data will require
computational techniques for identifying those precise
genomic loci where methylation levels change.

In the simple case, the task is to segment the genome
into two kinds of regions: hypomethylated and hyper-
methylated. Consider the data as a sequence of methy-
lation measurements associated with individual CpGs.
Examples of important considerations include: How to
model the sizes of the segments? What are the appro-
priate statistical models for describing the data (e.g.,
read depths at individual CpGs)? How should we mea-
sure confidence in the identification of a boundary be-
tween consecutive segments? More generally, the prob-
lem is to identify those contiguous genomic regions that
appear to have some homogeneity of DM A methylation.
Genomic segmentation problems have arisen previously
in several contexts, for example in studying copy num-
ber variation!®®). The demands of this particular com-
putational problem in the context of identifying methy-
lation boundaries are no greater than for studies of copy
number variation, and in fact both such tasks will re-
quire more powerful methods to fully leverage the data
when the underlying technology is second-generation
sequencing. Although these analysis problems will be
of particular interest to the signal processing commu-
nity, efficiency concerns are also present and attention
must also be paid to computational efficiency of these
analyses.

7 Methylated Sequence Analysis

Methylated cytosine in mammals has been referred
to as the “5th base”[37 38 and clearly this 5th base
can encode distinct information from unmethylated cy-
tosine, suggesting that in some contexts we should treat
these two as distinct letters in our sequence alphabet.
When one considers that much differential methylation,
particularly in mammals, occurs in regulatory regions
such as promoters, the 5-letter alphabet becomes even
more important. It has been found that individual
methylated cytosines can affect binding of transcrip-
tion factorsl®¥. The transcription factor CTCF has
been found to functionally bind at sites lacking DNA
methylation, but methylation through the site prevents
CTCF binding!*). In addition, the deeply conserved

J. Comput. Sci. & Technol., Jan. 2010, Vol.25, No.1

MBD family of proteins bind to specific DNA sequences
that include methylated CpGsl*1=#2l. There is evidence
that MBD proteins have functions related to the regu-
lation of chromatin, hence, transcription.

The problem of discovering transcription factor
binding sites (often called motif discovery) has received
much attention from both practical*3! and theoretical
perspectives!*4. The abstract task is, given a set of se-
quences, to identify a sequence pattern that is degene-
rate and that is enriched in the set of sequences vs.
some control set. From the perspective of algorithmic
complexity, there is no difference between an alphabet
of 4-letter alphabet and with 5 letters, similar to the
well studied task of predicting functional transcription
factor binding sites. A substantial complication arises,
however, when one considers that the methylation data
will not generally be discrete, but will instead provide a
methylation level associated with individual cytosines.

Modern genome-wide DNAsel hyper-sensitive site
mapping data can be valuable for both types of analy-
ses mentioned above. Although TFs have been thought
to provide sequence specificity in initial setup of DNA
methylation, more evidences have also pointed to ncR-
NAs that can also provide such roles, especially in ini-
tiation of silencing in imprinted regions.

8 Understanding Heterogenous Samples

Interesting computational problems arise from ex-
periments where the data may contain multiple DNA
methylation through individual genomic regions. The
simplest case is allelic DNA methylation, where two dis-
tinct methylation patterns are present through a given
region, even in data produced from homogenous cell
samples. Diploid cells have two copies of each chro-
mosome, and therefore possibly two distinct alleles for
each gene. In many cases DNA methylation has been
associated with the silencing of one allele, and this is
the major mechanisms of silencing an X chromosome
in females having two X chromosomes. This is also the
only mechanism yet identified in genomic imprinting.
How would data look in the case of allelic methylation?
For a profile of methylation frequencies at individual
CpGs, we expect to observe roughly 50% methylation
through a region having allelic methylation. However,
simply observing 50% methylation is not sufficient for
a conclusion of two “epi-alleles.” Depending on the
resolution of the data (related to the amount of data
available and the resolution of the experimental tech-
nology) we might be observing 50% methylation as a
result of 50% of CpGs being fully methylated in both
alleles. The information required to distinguish these
two possibilities is the relationships between methyla-
tion states of multiple CpGs in the same molecule. The
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individual reads from bisulfite sequencing experiments
can provide this information over short distances — a
limitation associated with read lengths — but it re-
mains unclear how best to resolve these two scenarios.
One may also use SNPs to identify alleles.

A more complex situation can arise when we pro-
file DNA methylation in heterogeneous samples. It is
well known that tumors consist of many cell types, with
some exhibiting normal and healthy phenotypes, but
many cells in the tumor will have highly unusual and
aggressive phenotypes[45]. The epigenomic features of
these cells are expected to differ significantly. One ma-
jor challenge in cancer research is to understand the
phenotypic composition of tumor samples according to
the epigenomics of each phenotype.

Given a dataset originating from a mixture of cell
types, the fundamental computational problem is to 1)
identify the methylation characteristics of the individ-
ual cell types, and 2) quantify the relative frequencies of
those cell types. This problem is analogous to a prob-
lem faced in metagenomic sequence assembly!*®! where
DNA is sequenced from heterogeneous populations of
microorganisms and all sequenced DNA can be mapped
to a single reference, presumed to be sufficiently close
to each organism. The task is to identify the individual
species present. This computational problem is reminis-
cent of sequence assembly, with two major differences:
1) the order and orientation of fragments are known,
and 2) rather than a single sequence to assemble, we
must assemble several.

To obtain a more formal abstraction, let X =
{z1,...,2,} be the set of methylation states in a set
of n reads from a bisulfite sequencing experiment. We
assume that |z;| = w for all 7, indicating that each
read maps over the same number of CpGs (not gene-
rally a realistic assumption). We also assume that the
reads have been mapped to a reference genome, so we
have a mapping function p : X — {1,...,m —w + 1},
such that p(z;) = j indicates that read ¢ is mapped
over CpGs beginning with the j-th CpG, where m is
the number of total CpGs. The most basic computa-
tional problem asks, for a given k, does there exist a
set S = {S1,..., 5k} € {0,1}™ of strings such that for
each z € X, there exists some S € S such that

z(j) = S(p(x) +j—1)
for 1 € j < w, where z(j) indicates the j-th position
in the binary string = and similarly for S. This al-
gorithmic problem can be solved through an elegant
transformation to the problem of partition a poset
into chains, and a further transformation to bipartite
graph matching(*”%8]. Variants of this problem arise
when errors are allowed (i.e., some mismatches are per-
mitted between z; and members of S), when cast as

an optimization problem under various objectives and
when different aspects of the underlying experiments
are considered (e.g., the use of paired-end reads). Any
of these problem variants may emerge as important in
different contexts — both in the analysis of methylation
data and other “meta-assembly” problems.

9 DNA Methylation in Regulatory Networks

In silico construction of regulatory networks is a field
still in its infancy, and there are many challenges re-
maining even when the networks are restricted to tra-
ditional forms of datal*9-3%. Because DNA methyla-
tion functions so frequently to regulate transcription it
seems natural to include this information in transcrip-
tional regulatory networks. Research into regulatory
networks has mainly focused on transcriptional regula-
tion, and is generally based on gene expression datal®!]
and often uses information about transcription factor
localization®2. The goal is to identify transcriptional
regulatory relationships between genes, where the re-
gulators are transcription factors, and when possible
we try to identify direct relationships indicating a phys-
ical interaction (e.g., a transcription factor binding at
a promoter of the target gene). Other forms of regu-
lation have been included, for example at the posttran-
scriptional or proteomic levels!®!. There remains es-
sentially no research directed towards how best to in-
clude epigenomic information, either for histone modifi-
cations/variants or DNA methylation. We remark that
the methods for incorporating DNA methylation data
into regulatory network construction will likely lead to
methods that can also be applied to histone data.

Let us first consider a possible scenario where the ab-
sence of epigenomic information in regulatory networks
can lead to significant problems. Suppose the network
construction effort has available all relevant expression
data, and also has information about the presence of
functional transcription factor binding sites in regu-
latory regions (including which TFs can bind at each
site). If a particular region is not accessible for binding
by transcription factors, then the regulatory interaction
will not take place, so clearly heterochromatic silencing
of genes mediated by epigenomic modifications is an
essential piece of information. One might argue that
epigenomic state is controlled by DNA binding proteins,
the expression of which could suggest epigenomic state
if the function of those proteins is sufficiently well un-
derstood. Such reasoning is false because of the critical
fact that epigenomic information is mitotically herita-
ble (and with a known mechanism in the case of DNA
methylation; see Section 2). The genes responsible for
regulating the epigenomic state at any locus may no
longer be expressed.
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To integrate epigenomic information into regula-
tory networks the first step is identifying genomic
regions with functional differential methylation. We
discussed this in Section 6. Next these differentially
methylated regions must be associated with specific
genes. This association is not likely a trivial task, and
will almost certainly require efforts to model expres-
sion based on features of both sequence and epigenomic
state of promoters and enhancers. A first step here
would build on work modeling expression using genomic
elements[®4-56); if differential methylation through a re-
gion can predict differential expression of a gene, then
we may assume that region is relevant to the gene. It
is also clear from studies of imprinting that methy-
lation through individual regions can have regulatory
influence over several genesl®”. We must also deter-
mine the direction of regulation by differential methyla-
tion. Although methylation through promoters is gen-
erally associated with silencing of the associated genes,
methylation through more distal regulatory regions can
have either activating or repressing effects by blocking
the activity of either repressing or activating transcrip-
tion factors.

In terms of representation and visualization of
DMRs in regulatory networks, it might be sufficient
to simply annotate genes in a way that indicates their
epigenomic regulation. From a different perspective,
one may include DMRs as primary elements (nodes)
in regulatory networks, which make sense as these ele-
ments can regulate and be regulated, and individual
DMRs can influence multiple target genes.

10 DNA Methylation and Somatic Trees

Computational problems associated with evolution-
ary trees have attracted attention from computational
biologists for decades[®-6% due as much to their mathe-
matical appeal and challenges as to their biological im-
portance. Just as evolutionary trees relate species ac-
cording to common descent and ancestral relationships,
developmental trees can relate the cells in a multicellu-
lar organism. The developmental tree is rooted at some
omnipotent stem cell (e.g., the zygote in case of sexual
reproduction), and terminally differentiated cells form
the leaves. Unlike evolutionary trees, developmental
trees are generally predetermined: while many somatic
changes do happen randomly, most important changes
along any tree branch are precisely regulated. Epige-
nomic modifications play a large role in development,
but most details remain poorly understood. As DNA
methylation becomes easier to profile, it will be possi-
ble to examine the role of methylation in guiding de-
velopment, but doing so will depend on computational
methods for processing epigenomic marks (including
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DNA methylation) relative to the structures of devel-
opmental trees.

The initial analysis question in understanding
methylation changes through somatic trees is to iden-
tify the DMRs, but computational methods are re-
quired to answer much more sophisticated biological
questions. For example, which features of DNA methy-
lation through individual loci appear to be “cladistic” in
developmental trees? Such features may indicate modes
of regulation that can stably restrict phenotypes to a
particular lineage, but to identify cladistic features re-
quires measures for cladisticity and fast algorithms for
testing this property. When multiple cells along a single
lineage are available, is it possible to identify progres-
sive changes? FEvidence exists for “lineage priming”,
the promiscuous expression of lineage specific genes in
uncommitted progenitors prior to their expression at
lineage specific levels®!l| and highly-sensitive methods
for identifying subtle yet progressive changes in methy-
lation along individual lineages. This knowledge will
also be crucial for understanding iPS cell reprogram-
ming and fate determination.

Computation involving DNA methylation changes
through somatic trees has recently been used for the
highly-specific problem of tracing the clonal evolution of
tumors and stem cell populations(®263] Aberrant DNA
methylation is a general feature of cancer genomes, with
methylation being disrupted early in tumorigenesis and
contributing to tumor progression. Cancer begins with
the transformation of a single cell, and tumors grow
as clonal expansions originating from the transformed
cell. These clonal cell populations are related by an
ancestral tree, and the random changes that occur at
genomic regions where DNA methylation is unregulated
can be used as molecular clocks. Using DNA methyla-
tion patterns through these randomly methylated loci,
it is possible to infer ancestral relationships for cells
sampled at distinct physical regions of tumors. Existing
studies of methylation dynamics during clonal evolution
have yet to fully leverage second-generation sequencing
technology, and doing so will undoubtedly require novel
methods that can integrate data from multiple loci.

Analysis of epigenomic data relative to somatic lin-
eage trees (whether known or inferred) presents multi-
ple challenges and opportunities for computational bi-
ologists. As experimental methods for profiling DNA
methylation and other epigenomic marks mature, data
analysis problems will place computational biology at
the center of elucidating the epigenomics of develop-
ment and differentiation.

11 Conclusion

Understanding the functions of DNA methylation
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and other epigenomic marks presents many opportuni-
ties for computational biologists. These opportunities
range from developing computational technology to ad-
dress fundamental problems of massive datasets to the
design of higher-level analysis methods for sophisticated
in silico experiments. As genome-scale experimental
technologies for DNA methylation become increasingly
accessible, the critical steps in major discoveries will
gradually shift towards data analysis. The result is a
more central role for computational scientists in these
projects. A deep understanding of both the relevant
biological questions and experimental technologies will
enable computer scientists to identify exciting and chal-
lenging analytical problems as they emerge from the
field of epigenomics.
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