Predicting genomic coverage by probabilistic binning and extrapolation

Timothy Daley¹ and Andrew Smith²

¹Department of Mathematics and ²Department of Molecular and Computation Biology, University of Southern California

Probabilistic binning of reads:

Are bins uncovered due to random chance or because no read overlaps? Can't distinguish true zeros from missing zeros

Genomic coverage ≈ bin size • # covered bins:

Extrapolating coverage

Extrapolating covered bins

Daley & Smith Nature Methods (2011):

- Predicting number of distinct reads from additional sequencing.
- · Treat distinct bins like distinct reads.
- · Apply Good & Toulmin's non-parametric empirical Bayes solution (*Biometrika* 1959) and rational function approximation

 $\Delta(t) = \#$ new covered bins from sequencing an additional tN reads

= E(bins uncovered in additional experiment) - E(initial # uncovered bins)

$$= L \int_0^\infty e^{-\lambda} \left(1 - e^{-(t-1)\lambda}\right) d\mu(\lambda)$$

$$= \sum_{i=1}^{\infty} (-1)^{i+1} (t-1)^{i} E n_{i} \approx \frac{p_{0} + p_{1}(t-1) + \dots + p_{p}(t-1)^{p}}{1 + q_{1}(t-1) + \dots + q_{Q}(t-1)^{Q}}$$

Results: extrapolating using 2% of the data

Data: 2 Single Cell libraries comparing library construction methods (Zong et al. Science 2012). MALBAC (Zong et al. Science 2012) & MDA (Dean et al. Gen. Res. 2001)

Library	MALBAC	MDA
SRA	SRX202978	SRX204160
Total reads	563.7M	534.8M
Reads mapping to femal chroms (bwa)		482.1M

MDA

