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Abstract

We present SMURF-seq, a protocol to efficiently sequence short DNA molecules on a long-read sequencer by
randomly ligating them to form long molecules. Applying SMURF-seq using the Oxford Nanopore MinION yields up
to 30 fragments per read, providing an average of 6.2 and up to 7.5 million mappable fragments per run, increasing
information throughput for read-counting applications. We apply SMURF-seq on the MinION to generate copy
number profiles. A comparison with profiles from Illumina sequencing reveals that SMURF-seq attains similar accuracy.
More broadly, SMURF-seq expands the utility of long-read sequencers for read-counting applications.
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Background
In the last decade, massively parallel high-throughput
short-read sequencing has revolutionized the efficiency
and breadth of applications for DNA sequencing [1].
These high-throughput sequencingmethods producemil-
lions to billions of short reads in a single run and have
led to the development of many applications that depend
on “read-counting” to measure the abundance of specific
sequences in a sample. Examples include RNA-seq, ChIP-
seq, and whole genome copy number profiling. Recently,
long-read technologies have been developed that are fill-
ing the gap left by short-read sequencers in applications
such as genome assembly [2, 3], which benefit from
connecting more distant sequences within a contiguous
molecule. Among these, the MinION instrument, from
Oxford Nanopore Technologies, is highly portable and
inexpensive and has shown its unique value for analy-
sis outside of central sequencing facilities [4]. Long-read
sequencers such as the MinION typically produce vastly
fewer reads from a sequencing run and are therefore less
efficient in applications that use sequenced reads purely
as a means to count molecules. However, these technolo-
gies have the enormous advantage of operating in near
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real-time, with a turnaround time that can be measured in
hours for some applications, rather than days or weeks.
Copy number variation (CNV) has been used success-

fully to understand a variety of diseases [5]—notably can-
cers, which exhibit both extreme variation and recurrent
trends that can be used for diagnostics and personalized
approaches to treatment. For example, the amplification
and loss of certain genes, such as RB1 deletion andMYCN
amplification in retinoblastoma, can be prognostic or even
predictive for treatment [6]. High-throughput short-read
sequencing has been extremely effective in copy number
profiling of cancers [7], including profiling single tumor
cells [8]. However, for many potential users, the efficiency
of high-throughput short-read sequencing in CNV anal-
ysis is determined by the availability of instruments and
need for heavy multiplexing to hit reasonable cost per
profile. A sequencing core is typically involved and an
individual profile must wait for a “full” run before it can
be processed. The MinION sequencer has an accessible
buy-in and is easy to use. Unfortunately, the MinION
has optimal nucleotide throughput when producing reads
that are orders of magnitude longer than needed for CNV
profiling.
To make full use of the advantages offered by the Min-

ION sequencer, we introduce sampling molecules using
re-ligated fragments (SMURF)-seq, a protocol to effi-
ciently sequence short DNA molecules on a long-read
sequencer. The strategy of SMURF-seq is to concatenate
short fragments into very long molecules (∼8 kb) prior
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to sequencing. The concept of ligating short molecules
together prior to sequencing was introduced in serial anal-
ysis of gene expression (SAGE) [9] and then subsequently
used in short multiply aggregated sequence homologies
(SMASH) for CNV profiling using Illumina short-read
technology [10] and ConcatSeq for target enrichment
workflows on PacBio machines [11]. SMURF-seq differs
from these methods in that the fragmented and re-ligated
molecules are substantially longer, it allows for variable
fragment lengths as permitted by long-read sequencing,
and the number of fragments within each read is sub-
stantially greater. Here we describe the details of the
SMURF-seq approach and demonstrate the accuracy of
this approach for CNV profiling.

Results
The SMURF-seq approach to sequence short molecules
The SMURF-seq protocol involves cleaving the genomic
DNA into short fragments. These fragmented molecules
are then randomly ligated back together to form artifi-
cial long DNA molecules. The long re-ligated molecules
are sequenced following the standard MinION library
preparation protocol. After (or possibly concurrent with)
sequencing, the SMURF-seq reads are mapped to the ref-
erence genome in a way that simultaneously splits them
into their constituent fragments, each aligning to a dis-
tinct location in the genome (Fig. 1).
More specifically, genomic DNA is fragmented using

restriction enzymes that result in short fragments, with
length just sufficient for an acceptable rate of uniquely
mapping fragments in the reference genome. For the
human reference, 100 bp is a reasonable length. In
our applications, we tested SaqAI and Hin1ll restriction
enzymes, which produce molecules with mean lengths

of 150.2 bp and 208.9 bp, respectively. The fragmented
DNA molecules are then ligated randomly to form longer
molecules using T4 DNA ligase enzyme (Additional file 1:
Figure S1). The resulting long DNA molecules are
sequenced following standard MinION library prepara-
tion protocols (in our experiments we used two different
protocols). TheSMURF-seqprotocol is completely enzymatic
and takes less than 90 min to complete (Additional file 1:
Figure S2 and Additional text 1.1). We also tested dsDNA
Fragmentase enzymes (New England Biolabs) and acous-
tic shearing (Covaris) to fragment DNA. However, these
methods require an additional end-repair step after frag-
mentation and the ligated molecules failed to reach the
lengths we obtained by using restriction fragmentation
(Additional file 1: Additional text 1.2).
The reads sequenced using SMURF-seq can be mapped

to a reference genome by first identifying short matches
within the reads, corresponding to parts of the individual
fragments, and then extending those to locate fragment
boundaries. This is handled nicely using the seed-and-
extend paradigm implemented in many existing long-
read mapping tools. Although none of these tools were
designed to align SMURF-seq reads, several long-read
aligners such as BWA-MEM [12], Minimap2 [13], and
LAST [14] include steps designed for split-read alignment,
which can be leveraged for aligning SMURF-seq reads.
We evaluated these tools on simulated SMURF-seq data
generated by concatenating random fragments from real
Oxford Nanopore reads. This emulates idealized SMURF-
seq reads. Within the simulated reads, the boundaries
of each fragment are known a priori, as are their map-
ping locations when in the context of their original long
reads.We used this information to evaluate mapping tools
in terms of (1) how well they identify fragments purely

Fig. 1 SMURF-seq efficiently sequences short fragments of DNA for read-counting applications with a reference genome on long-read sequencers
and yields up to 30 countable fragments per sequenced read. SMURF-seq sequences short DNA molecules by generating long concatenated
molecules from these. SMURF-seq reads are aligned by splitting them into multiple fragments, each aligning to a distinct region in the genome
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for the purpose of counting molecules, which is the pri-
mary information used in CNV analysis, and (2) how
well they identify individual mapping bases within reads.
After mapping these reads, we calculated precision and
recall for identifying both the correct fragment locations,
and the individual mapping bases within the fragments
(i.e., the correct fragment boundaries). Using this simulation
setup, wedeterminedtheoptimalSmith-Watermanalignment
score for use with SMURF-seq reads (Additional file 1:
Additional text 2). Based on these results, BWA-MEM
outperformed other tools, and thus, we used BWA-
MEM to align SMURF-seq reads (Additional file 2:
Additional table 1 and 2). Briefly, BWA-MEM uses short
seed hits originating from different parts of the long
reads (and therefore, in our application, different frag-
ments within those long reads), to form clusters of seed
hits in the reference genome. Nearby clusters are joined,
and then extended, eventually resulting in (for most frag-
ments) one alignment per fragment. In our analysis, we
employed BWA-MEM without any modifications to opti-
mize identification of fragment boundaries. According to
our simulations, this mode of operation may not perfectly
identify fragment boundaries, but performs well when
identifying mapping locations of the individual fragments,
which is the information passed to subsequent steps in our
analysis.

Generating higher fragment counts in a sequencing run
CNV profiling, and read-counting in general, can be
done on nanopore sequencers with long reads follow-
ing the standard sequencing procedure [15]. A typical
Oxford MinION sequencing run generates approximately
500k reads (length ∼8 kb) [2, 16]. Read-counting applica-
tions in general do not benefit from longer reads beyond
what is necessary for unique mapping to the reference
genome. In these applications, for any fixed number of
nucleotides sequenced, more information is obtained if
those nucleotides are organized as more DNA molecules,
rather than longer contiguous fragments.
In general, for a given sample of DNA, a nanopore

instrument will generate more reads if the corresponding
molecules are shorter. Once a molecule is loaded into a
pore, the time spent sequencing is less for shorter reads.
In addition, for a fixed amount of DNA, shorter molecules
result in highermolar concentration when loaded onto the
machine, increasing the rate at which each pore captures
molecules [17, 18]. We verified this rationale by sequenc-
ing short DNA molecules (restriction enzyme digested
normal diploid genome) using theOxfordMinION instru-
ment. The sequencing run produced 2.58 million reads
with a mean read length of 630.93 bp (Additional file 1:
Figure S3 and Additional text 3.1). Using the same instru-
ment, the SMURF-seq runs, we report here average 6.2
million mapped fragments per run, which is substantially

more fragments than directly sequencing short reads
(Additional file 1: Additional table 3).

Accurate CNV profiles using SMURF-seq
To demonstrate the utility of SMURF-seq, we generated
CNV profiles of normal diploid and highly rearranged
cancer genomes. The mapped fragments were grouped
into variable length “bins” across the genome and bin
counts were used to generate CNV profiles as described
in [19, 20].
We sequenced a normal diploid female genome with

SMURF-seq, resulting in 270.8k reads (mean read length
of 6.75 kb) in a single run. These reads were split into
7.28 million fragments (26.87 mean fragments per read).
A CNV profile for this normal diploid genome, with the
expected (approximately flat) appearance can be seen in
Fig. 2a (and Additional file 1: Figure S4). We verified that
the SMURF-seq procedure behaves similarly using the
Rapid Sequencing Kit (Additional file 1: Figure S5). Next,
we applied SMURF-seq to the breast cancer line SK-BR-
3, generating 147.0k reads with mean length of 7.62 kb,
which were split into 4.52 million fragments (30.78 mean
fragments per read). We then obtained a CNV profile
using 5000 bins, corresponding to an average bin size of
approximately 600 kb (Fig. 2b; Additional file 1: Figure S6).
To provide a quantification of accuracy in terms of

individual CNV events, we conducted whole-genome
sequencing (WGS) on the same SK-BR-3 using Illumina
(5.56 million reads; 130 bp, single-end). We used this to
define a ground truth by calling CNV events for each
of the pre-defined bins (both amplifications and dele-
tions) based on segmented signal with a cutoff of 1.25/0.8
(Fig. 2b) [6, 21]. This resulted in 1466 events (886 ampli-
fications, 580 deletions) from 4953 bins. We then called
events using the identical procedure with SMURF-seq
data from the same SK-BR-3 sample. The precision and
recall for SMURF-seq relative to the Illumina calls was
0.982 and 0.988, respectively (Fig. 2c). Figure 2d shows
a zoom-in of a region with extreme copy number alter-
ations. The bin ratios for the Illumina WGS and the
SMURF-seq profiles are highly correlated (Pearson r =
0.99; Fig. 2e). Replicates for these genomes show a high
degree of reproducibility for these profiles (Additional
file 1: Figure S7 and S8).
We also generated higher-resolution CNV profiles at

20,000 and 50,000 bins, corresponding to an average of
approximately 150 kb and 60 kb in length respectively
(Additional file 1: Figure S9a, b). The profiles obtained
at these resolutions have a high correlation with the pro-
files obtained using Illumina WGS (Pearson r > 0.97;
Additional file 1: Figure S9c, d). Using SMURF-seq also
generates fragments at a faster rate than sequencing short
molecules directly (Additional file 1: Figure S10), and the
CNV profile with reads generated in the first 45, 90, and
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Fig. 2 Accurate copy number profiles with SMURF-seq. a CNV profile of a normal diploid genome. Each blue point is a bin ratio to mean and the red
line is the segmented bin ratio. b Superimposed CNV profiles of SK-BR-3 genome generated using SMURF-seq and Illumina WGS reads. c Venn
diagram illustrating the accuracy of event calls using SMURF-seq compared with Illumina WGS. d Zoom-in of copy number changes on
chromosome 8. e Scatter plot of bin ratio of SK-BR-3 genome using SMURF-seq and Illumina WGS reads. Pearson correlation of the data is shown

180 min of sequencing had a high correlation to the pro-
file with reads from the complete run (Pearson r > 0.98;
Additional file 1: Figure S11).

Concordant profiles from fewer countable fragments
Several cancer-related studies have employed CNV profil-
ing based on low-coverageWGS [22, 23]. It has previously
been demonstrated that 250k reads are sufficient for accu-
rate genome-wide CNV profiling of single cells [24]. At
the same time, the CNV profiles from a population of cells
has been shown to have a high correlation with single-cell
profiles [8, 24]. We reasoned that using 250k fragments
for CNV profiling using a population of cells would give
useful profiles if they remained sufficiently accurate. By
down-sampling our SMURF-seq data, we verified that
10k reads, approximately 250k fragments, result in highly
correlated CNV profiles (Pearson r = 0.98; Fig. 3a, b).
Given the total capacity of the MinION instrument,

this indicates that multiple samples can effectively be

barcoded and multiplexed in a single sequencing run.
To verify this, we sequenced two DNA samples (normal
diploid female and SK-BR-3) in a single run (Additional file 1:
Figure S12). These samples were processed with SMURF-
seq protocol and then barcoded following the standard
library construction. After demultiplexing and mapping
the reads, the diploid genome had a CNV profile as
expected (Fig. 3c) and the SK-BR-3 CNV profile was
nearly identical to the profile obtained using Illumina
WGS (Pearson r = 0.99; Fig. 3d, e).

Discussion and conclusion
Our results demonstrate that SMURF-seq can gen-
erate more information for CNV analysis in a sin-
gle run of the Oxford MinION sequencer, compared
with either producing long reads in the usual way or
direct short-read sequencing on the same instrument.
This increased information is in the form of increased
numbers of distinct DNA fragments sequenced and
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Fig. 3Multiple SMURF-seq CNV profiles by multiplexing in a single run. a CNV profile of SK-BR-3 genome with down-sampled 10k SMURF-seq reads.
b Scatter plot of normalized bin counts of the original SMURF-seq data and data down-sampled to 10k SMURF-seq reads. Pearson correlation of the
data is shown. c CNV profile of barcode01 (Normal diploid genome) reads. d CNV profile of barcode02 (SK-BR-3 cancer genome) reads. e Scatter plot
of bin ratios of SK-BR-3 genome using multiplexed SMURF-seq and Illumina WGS reads

can be leveraged in multiple ways. Applying SMURF-
seq on a single sample for a full run corresponds to
higher counts for downstream analysis. In CNV analy-
sis, increased counts either add confidence for a fixed
resolution or can allow higher resolution analysis (i.e.,
smaller bins) at the same level of confidence. Alterna-
tively, the increased information throughput can effec-
tively reduce the time required to produce the same
number of counts for CNV analysis by terminating the
sequencing earlier. Finally, the increased information yield
can be directed towards reducing the cost of generat-
ing CNV profiles by allowing a greater degree of mul-
tiplexing. For CNV analysis at resolutions permitted by
250k mapped fragments, our results show SMURF-seq
allows roughly 20 and up to 30 samples in a single
run, compared with 10 per run directly using short-read
sequencing.
CNV analysis using “low-coverage” whole-genome

sequencing, at resolution comparable to what we present
is becoming increasingly important in diagnostic eval-
uation of cancer. The loss of tumor-suppressor genes

PTEN and RB1 and the amplification of MYC oncogene
play important roles in prostate cancer prognosis [25].
Bin size determines resolution, and using larger bins
reduces capacity for observing smaller events. However,
many diagnostic amplifications and deletions of impor-
tant genes (including loss of TP53 or amplification of
ERBB2 [26]) are in the megabase size range. For instance,
the focal amplification of androgen receptor (AR) [21, 27]
andMYCN [28] as well as loss of PTEN [29] and RB1 [28]
can be detected with CNV profiling using 5000 bins.
Instruments like the MinION are accessible for almost

any lab, with a very low buy-in. SMURF-seq allows
such technology to be more efficiently leveraged in read-
counting applications like CNV analysis. Despite the
extreme low buy-in associated with current nanopore-
based instruments, the cost per run remains relatively
high. This is expected to drop as the technology matures.
At the same time, as explained below, improvements to
throughput for long-read sequencing on these instru-
ments will directly translate into improved efficiency of
SMURF-seq.
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The most important factor in the performance of
SMURF-seq is that sequencing concatenated fragments
effectively eliminates the pore reload time for all but the
first fragment in each read. However, there are a vari-
ety of additional factors that favor further optimization of
the approach employed by SMURF-seq. First, reduction
of resources spent on technical nucleotides: SMURF-seq
uses a single barcode and sequencing adapter per read
consisting of multiple fragments; sequencing short reads
uses one barcode and adapter per fragment, adding
approximately 50 bases to each fragment. This increases
the time to sequence each short read (Additional file 1:
Additional text 3.2). In sequencing short reads, as the
reads get shorter the time consumed by these technical
bases increases. In SMURF-seq, sequencing either shorter
fragments in fixed length reads, or longer reads con-
taining fragments of fixed average length, both reduce
the time consumed sequencing these technical bases. In
the limit, assuming 100-bp DNA fragments, sequencing
those fragments as short-reads corresponds to 33% tech-
nical nucleotides; for SMURF-seq, the portion of tech-
nical nucleotides remains low. Second, more nucleotides
sequenced at full speed: We observed that the speed of
sequencing was lower when sequencing short molecules.
For example, the average sequencing speed was 315.54
bases per second for sequencing the diploid genome
without SMURF-seq and 400.29 bases per second when
sequencing using SMURF-seq on the MinION sequencer
(Additional file 1: Figure S13). Third, leveraging opti-
mizations to long-read protocols: The rapidly evolving
nanopore library construction kits are continually opti-
mized for long-read sequencing and would likely require
significant ad-hoc modifications to optimize sequencing
of short molecules of length optimal for read-counting
applications. SMURF-seq alleviates these drawbacks by
using the nanopore instrument as intended for long-read
sequencing, while generating the desired short fragments.
At present, SMURF-seq has several potential draw-

backs. For users already routinely conducting CNV analy-
sis, with established workflows for both wet and dry com-
ponents, SMURF-seq is likely to present no immediate
benefit. Although the restriction enzymes we used do not
appear to have introduced substantial bias in our results,
using different restriction enzymes could introduce bias
and would have to be verified. We have not thoroughly
assessed if there might be regions in the genome that are
difficult to capture when using SMURF-seq; these need
to be assessed when using SMURF-seq for other read-
counting applications. Overall driving down the fragment
length (to roughly 100 bp) is desirable for SMURF-seq.
However, as fragment length decreases, mapping becomes
more challenging for both directly sequencing short reads
and the SMURF-seq approach, but the impact will be
greater for SMURF-seq, due to the intricacy of mapping.

We aligned SMURF-seq reads using the BWA-MEM
software [12]. Though not designed for the purpose
of aligning SMURF-seq reads, BWA-MEM still accu-
rately identifies the fragments within reads and their
genomic mapping locations. At current fragment lengths,
for the application of profiling copy number variation
(and other read-counting applications), there is little room
for improving mapping accuracy. However, with shorter
fragments, accuracy in identifying fragment boundaries
will begin to impact the ability of aligners to recover
fragments, and algorithms designed specifically to map
SMURF-seq reads will become essential.
We used SMURF-seq with the low-cost MinION

sequencer to obtain data similar to that expected from
typical short-read sequencing and generated high-quality
CNV profiles from this output. With a fast and simple
preparation method and a turnaround time measured in
hours, the SMURF-seq approach could provide a highly
efficient methodology for research and clinical labora-
tories where access to large-scale sequencing is limited.
We envision a broadening of the applications of SMURF-
seq as the underlying sequencing technology evolves and
as SMURF-seq itself improves by continual decrease in
fragment lengths, increase in sequenced read length, and
data analysis methods optimized for SMURF-seq result-
ing in an increase in information yield per nucleotide
sequenced.

Methods
DNA samples
The normal diploid female DNA was purchased from
Promega (Cat. no. G1521). Breast cancer cell line SK-BR-
3 (American Type of Culture Collection (ATCC), Cat. no.
HTB-30) was cultured in RPMI-1640 medium (Thermo
Fisher Scientific, Cat. no. 11875093) supplemented with
10% fetal bovine serum (FBS) (Thermo Fisher Scientific,
Cat. no. 35011CV), was maintained at 37 ◦ in a humidified
chamber supplied with 5% CO2, and was regularly tested
for mycoplasma infection.

Cell lysis and DNA purification
The DNA from SK-BR-3 cells was extracted and puri-
fied with the QIAamp DNA Blood Mini Kit (Qiagen, Cat.
no. 51104) following the protocol for cultured cells given
by the manufacturer. RNA and proteins in the cells were
degraded using RNase A stock solution (100 mg/ml) (Qia-
gen, Cat. no. 19101) and Protease-K (Qiagen, Cat. no.
19133) respectively. Both purchased female diploid DNA
and extracted SK-BR-3 DNA were treated with the same
downstream processes.

Fragmenting genomic DNA
Two to 3μg of genomicDNAwas fragmented with restric-
tion enzyme Anza 64 SaqAI (Thermo Fisher Scientific,
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Cat. no. IVGN0644) for 30 min at 37 ◦. The fragmented
DNA was cleaned with the QIAquick PCR purification kit
(Qiagen, Cat. no. 8106) and eluted with 34 μl nuclease-
free water. The concentration of DNA was quantified on a
Qubit Fluorometer v3 (Thermo Fisher Scientific, cat. no.
Q33216) with the Qubit dsDNA HS assay kit (Thermo
Fisher Scientific, cat. no. Q32854).

Ligation of fragmented DNA
Five hundred nanograms of fragmented DNA in 10 μl
nuclease-free water was mixed with 10 μl Anza T4 DNA
Ligase Master Mix (Thermo Fisher Scientific, Cat. no.
IVGN210-4) and incubated for 30 min at room temper-
ature. The ligated DNA was cleaned with 2× volume
Ampure XP beads (Beckman Coulter, Cat. no. A63881)
and eluted in nuclease-free water. This step was done in
multiple tubes if more than 500 ng of fragmented DNA
was needed to be ligated. The concentration of DNA was
quantified on a Qubit Fluorometer v3 with the Qubit
dsDNA HS assay kit to ensure ≥ 1 μg (≥ 400 ng, if
the Rapid kit was used for library preparation) remained.
The size of the ligated DNA molecules were assessed
with 1% agarose gel electrophoresis run at 90 V for
30 min.

Library preparation (SQK-LSK108 1D DNA by ligation)
One microgram of re-ligated DNA in 45 μl of nuclease-
free water was end-repaired and dA-tailed (New England
Biolabs (NEB), Cat. no. E7546), followed by elution in
nuclease-free water after 1.5× volume Ampure XP beads
clean-up. Sequencing adapters (AMX1D) were ligated
with Blunt/TA Ligase Master Mix (NEB, Cat.no. M0367)
and cleaned with 0.4× volume Ampure XP beads and
eluted using 15 μl Elution Buffer (ELB) following the
manufacturer’s protocol (Oxford Nanopore Technologies
(ONT), 1D genomic DNA by ligation protocol).

Multiplexed library preparation (EXP-NBD103 and
SQK-LSK108)
Seven hundred nanograms of each re-ligated sample
in 45 μl of nuclease-free water was end-repaired, dA-
tailed (NEB, Cat. no. E7546), cleaned with 1.5× vol-
ume Ampure XP beads, and eluted in nuclease-free
water. Different Native Barcodes (NB-x) for each sam-
ple was ligated with Blunt/TA Ligase Master Mix (NEB,
Cat.no. M0367), cleaned with 2× volume Ampure XP
beads and eluted in nuclease-free water. Equimolar
amounts of each sample was pooled to have 700 ng
of DNA in 50 μl water. Barcode adapters (BAM) were
ligated with Quick T4 DNA Ligase (NEB, Cat. no.
E6056), cleaned with 0.4× volume Ampure XP beads
and eluted using 15 μl Elution Buffer (ELB) following
the manufacturer’s protocol (ONT, 1D native barcoding
genomic DNA).

Library preparation (SQK-RAD003 Rapid sequencing)
Four hundred nanograms of re-ligated DNA was con-
centrated with 2× volume Ampure XP beads to 7.5 μl
nuclease-free water. DNA was tagmented with Fragmen-
tation Mix (FRA), and Rapid 1D Adapter (RPD) was
attached following the manufacturer’s protocol (ONT,
rapid sequencing).

MinION sequencing and base-calling
All the prepared libraries were loaded on R9.5 Flow-
cells following the manufacturer’s protocol (ONT) and
sequenced for up to 48 h using the script specific to library
preparation protocol. Base-calling and de-multiplexing
barcoded reads were performed using ONTGuppy (2.3.5)
with the appropriate parameters based on the library
preparation kit.

Read alignment
The sequenced reads were mapped to the human ref-
erence genome (hg19) using BWA-MEM (0.7.17) with
the “-x ont2d -k 12 -W 12 -A 4 -B 10 -O 6
-E 3 -T 120” options (Additional file 1: Additional
text 2).

Estimation of copy number variations
CNV profiles were generated using the procedure
described in [19, 20] with the modification employed
in [27, 29]. Briefly, the human reference genome (hg19)
was split into 5000 (20,000 or 50,000) bins containing
an equal number of uniquely mappable locations, and
the bin counts were determined using uniquely mapped
fragments. Bins with spuriously high counts (“bad bins,”
typically around centromeric and telomeric regions) were
masked for downstream analysis [20]. This procedure
normalizes bin counts for biases correlated with GC con-
tent by fitting a LOWESS curve to the GC content by
bin count, and subtracting the LOWESS estimate from
each bin [20]. Circular binary segmentation (CBS) [30],
implemented in DNAcopy [31] package, then identifies
breakpoints in the normalized bin counts. Following [27,
29], after CBS, spurious segmentation calls were removed.
The influence of the GC content correction can be seen in
Additional file 1: Figure S14.

Comparison with IlluminaWGS of SK-BR-3 genome.
DNA from SK-BR-3 cells was used to construct WGS
library with the NEBNext UltraII FS DNA Library Prep
Kit (NEB, Cat. no. E7805) following the manufacturer’s
instructions. After library quality and quantity assessment
with Qubit 3.0 HS dsDNA assay and BioAnalyzer HS
dsDNA assay (Agilent), libraries were sequenced onHiSeq
2500 (Illumina) with single-end 130 cycles mode.
The reads were mapped with BWA-MEM using the

default parameters, PCR duplicates were removed, and
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CNV profiles were generated using exactly the same
method as used for SMURF-seq reads. The scatter plots
and Pearson correlations comparing the CNV profiles
were produced using R.
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5703 kb)

Additional file 2: Additional table 1. Alignment score parameter
combinations for BWA-MEM, LAST, and Minimap2. Additional table 2.
Refining alignment scoreparameter combinations for BWA-MEM. (XLSX 59 kb)

Additional file 3: Review history. (DOCX 23 kb)

Abbreviations
CNV: Copy number variation; SMURF: Sampling molecules using re-ligated
fragments

Acknowledgements
We would like to thank all Smith Lab members for their critical comments and
helpful discussions on this study. We thank Dr. Milind Pore for preparing
SK-BR-3 cell culture.

Review history
The review history is available at Additional file 3.

Authors’ contributions
ADS conceived the project. RKP, LX, JH, and ADS designed the experiments.
RKP and LX conducted the experiments. RKP analyzed the data with
supervision from ADS. RKP, ADS, JH, and LX wrote the manuscript. All authors
read and approved the final manuscript.

Funding
This work was supported by NIH grant R01 HG007650 to ADS. JH is supported
by Breast Cancer Research Foundation (BCRF).

Availability of data andmaterials
Scripts and documentation for CNV analysis using SMURF-seq reads and for
generating simulated data to evaluate mapping performance are available at
https://github.com/smithlabcode/smurfseq_scripts [32]
under GNU General Public License version 3 and at Zenodo with the DOI
http://dx.doi.org/10.5281/zenodo.3227005 [33]. Sequence
data generated during the study are available in SRA with the accession
number PRJNA454059 [34].
This work used previously published data (Additional file 1: Additional text 2;
Run accession: ERR2184696, ERR2184704, ERR2184712, and ERR2184722) from
the study [2] available in the public repository [35].

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Quantitative and Computational Biology Section, Department of Biological
Sciences, University of Southern California, 1050 Childs Way, Los Angeles
90089, USA. 2Michelson Center for Convergent Bioscience, University of
Southern California, 1002 Childs Way, Los Angeles 90089, USA.

Received: 30 June 2018 Accepted: 6 June 2019

References
1. Kircher M, Kelso J. High-throughput DNA sequencing–concepts and

limitations. Bioessays. 2010;32(6):524–36.
2. Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, Tyson JR, Beggs

AD, Dilthey AT, Fiddes IT, et al. Nanopore sequencing and assembly of a
human genome with ultra-long reads. Nat Biotechnol. 2018;36(4):338–45.

3. Loman NJ, Quick J, Simpson JT. A complete bacterial genome
assembled de novo using only nanopore sequencing data. Nat Methods.
2015;12(8):733.

4. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA,
Koundouno R, Dudas G, Mikhail A, et al. Real-time, portable genome
sequencing for ebola surveillance. Nature. 2016;530(7589):228.

5. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom
B, Yoon S, Krasnitz A, Kendall J, et al. Strong association of de novo copy
number mutations with autism. Science. 2007;316(5823):445–9.

6. Berry JL, Xu L, Murphree AL, Krishnan S, Stachelek K, Zolfaghari E,
McGovern K, Lee TC, Carlsson A, Kuhn P, et al. Potential of aqueous
humor as a surrogate tumor biopsy for retinoblastoma. JAMA
Ophthalmol. 2017;135(11):1221–30.

7. ChiangDY, GetzG, JaffeDB, O’kellyMJ, ZhaoX, Carter SL, RussC, Nusbaum C,
Meyerson M, Lander ES. High-resolution mapping of copy-number
alterations with massively parallel sequencing. Nat Methods. 2009;6(1):99.

8. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K,
Stepansky A, Levy D, Esposito D, et al. Tumour evolution inferred by
single-cell sequencing. Nature. 2011;472(7341):90.

9. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene
expression. Science. 1995;270(5235):484–7.

10. Wang Z, Andrews P, Kendall J, Ma B, Hakker I, Rodgers L, Ronemus M,
Wigler M, Levy D. Smash, a fragmentation and sequencing method for
genomic copy number analysis. Genome Res. 2016;26(6):844–51.

11. Schlecht U, Mok J, Dallett C, Berka J. ConcatSeq: A method for increasing
throughput of single molecule sequencing by concatenating short DNA
fragments. Sci Rep. 2017;7(1):5252.

12. Li H. Aligning sequence reads, clone sequences and assembly contigs
with bwa-mem. 2013. arXiv preprint arXiv:1303.3997.

13. Li H. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics. 2018;1:7.

14. Seshan VE, Olshen A. DNAcopy: DNA copy number da ta analysis.
2017;21(3):487–93. http://bioconductor.org/packages/DNAcopy/. R
package version 1.50.1. Accessed 14 Aug 2017.

15. Euskirchen P, Bielle F, Labreche K, Kloosterman WP, Rosenberg S,
Daniau M, Schmitt C, Masliah-Planchon J, Bourdeaut F, Dehais C, et al.
Same-day genomic and epigenomic diagnosis of brain tumors using
real-time nanopore sequencing. Acta Neuropathol. 2017;134(5):691–703.

16. Tyson JR, O’Neil NJ, Jain M, Olsen HE, Hieter P, Snutch TP. Minion-based
long-read sequencing and assembly extends the caenorhabditis elegans
reference genome. Genome Res. 2018;28(2):266–74.

17. Muthukumar M. Theory of capture rate in polymer translocation. J Chem
Phys. 2010;132(19):05–605.

18. Wanunu M, Sutin J, McNally B, Chow A, Meller A. DNA translocation
governed by interactions with solid-state nanopores. Biophys J.
2008;95(10):4716–25.

https://doi.org/10.1186/s13059-019-1732-1
https://doi.org/10.1186/s13059-019-1732-1
https://doi.org/10.1186/s13059-019-1732-1
https://github.com/smithlabcode/smurfseq_scripts
http://dx.doi.org/10.5281/zenodo.3227005
http://bioconductor.org/packages/DNAcopy/


Prabakar et al. Genome Biology          (2019) 20:134 Page 9 of 9

19. Baslan T, Kendall J, Rodgers L, Cox H, Riggs M, Stepansky A, Troge J,
Ravi K, Esposito D, Lakshmi B, et al. Genome-wide copy number analysis
of single cells. Nat Protocol. 2012;7(6):1024.

20. Kendall J, Krasnitz A. In: Wajapeyee N, editor. Computational methods for
DNA copy-number analysis of tumors. New York: Springer; 2014,
pp. 243–59.

21. Dago AE, Stepansky A, Carlsson A, Luttgen M, Kendall J, Baslan T,
Kolatkar A, Wigler M, Bethel K, Gross ME, et al. Rapid phenotypic and
genomic change in response to therapeutic pressure in prostate cancer
inferred by high content analysis of single circulating tumor cells. PloS
ONE. 2014;9(8):101777.

22. Macintyre G, Goranova TE, De Silva D, Ennis D, Piskorz AM, Eldridge M,
Sie D, Lewsley L-A, Hanif A, Wilson C, et al. Copy number signatures and
mutational processes in ovarian carcinoma. Nat Genet. 2018;50(9):1262.

23. Kader T, Goode DL, Wong SQ, Connaughton J, Rowley SM, Devereux L,
Byrne D, Fox SB, Arnau GM, Tothill RW, et al. Copy number analysis by
low coverage whole genome sequencing using ultra low-input DNA
from formalin-fixed paraffin embedded tumor tissue. Genome Med.
2016;8(1):121.

24. Baslan T, Kendall J, Ward B, Cox H, Leotta A, Rodgers L, Riggs M, D’Italia
S, Sun G, Yong M, et al. Optimizing sparse sequencing of single cells for
highly multiplex copy number profiling. Genome Res. 2015;25(5):714–24.

25. Alexander J, Kendall J, McIndoo J, Rodgers L, Aboukhalil R, Levy D,
Stepansky A, Sun G, Chobardjiev L, Riggs M, et al. Utility of single-cell
genomics in diagnostic evaluation of prostate cancer. Cancer Res.
2018;78(2):348–58.

26. Hicks J, Krasnitz A, Lakshmi B, Navin NE, Riggs M, Leibu E, Esposito D,
Alexander J, Troge J, Grubor V, et al. Novel patterns of genome
rearrangement and their association with survival in breast cancer.
Genome Res. 2006;16(12):1465–79.

27. Gerdtsson E, Pore M, Thiele J-A, Gerdtsson AS, Malihi PD, Nevarez R,
Kolatkar A, Velasco CR, Wix S, Singh M, et al. Multiplex protein detection
on circulating tumor cells from liquid biopsies using imaging mass
cytometry. Convergent Sci Phys Oncol. 2018;4(1):015002.

28. Berry JL, Xu L, Kooi I, Murphree AL, Prabakar RK, Reid M, Stachelek K, Le
BHA, Welter L, Reiser BJ, et al. Genomic cfDNA analysis of aqueous
humor in retinoblastoma predicts eye salvage: The surrogate tumor
biopsy for retinoblastoma. Mol Cancer Res. 2018;16(11):1701–12.

29. Malihi PD, Morikado M, Welter L, Liu ST, Miller ET, Cadaneanu RM,
Knudsen BS, Lewis MS, Carlsson A, Velasco CR, et al. Clonal diversity
revealed by morphoproteomic and copy number profiles of single
prostate cancer cells at diagnosis. Convergent Sci Phys Oncol. 2018;4(1):
015003.

30. Olshen AB, Venkatraman E, Lucito R, Wigler M. Circular binary
segmentation for the analysis of array-based DNA copy number data.
Biostatistics. 2004;5(4):557–72.

31. Seshan VE, Olshen A. DNAcopy: DNA copy number data analysis.
Bioconductor; 2017. http://bioconductor.org/packages/DNAcopy/, R
package version 1.50.1. Accessed 14 Aug 2017.

32. Rishvanth KP, Xu L, Hicks J, Smith AD. SMURF-seq: efficient copy number
profiling on long-read sequencers. Source Code. 2019. https://github.
com/smithlabcode/smurfseq_scripts. GitHub. Accessed 1 Apr 2019.

33. Rishvanth KP, Xu L, Hicks J, Smith AD. SMURF-seq: efficient copy number
profiling on long-read sequencers. Source Code. 2019. http://dx.doi.org/
10.5281/zenodo.3227005. Zenodo. Accessed 27 May 2019.

34. Rishvanth KP, Xu L, Hicks J, Smith AD. SMURF-seq: efficient copy number
profiling on long-read sequencers. NCBI Seq Read Arch. 2019. https://
www.ncbi.nlm.nih.gov/bioproject/PRJNA454059/. Accessed 27 May 2019.

35. Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, Tyson JR, Beggs
AD, Dilthey AT, Fiddes IT, et al. Nanopore sequencing and assembly of a
human genome with ultra-long reads. Eur Nucleotide Arch (ENA). 2018.
https://www.ebi.ac.uk/ena/data/view/PRJEB23027. Accessed 25 Mar
2019.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

http://bioconductor.org/packages/DNAcopy/
https://github.com/smithlabcode/smurfseq_scripts
https://github.com/smithlabcode/smurfseq_scripts
http://dx.doi.org/10.5281/zenodo.3227005
http://dx.doi.org/10.5281/zenodo.3227005
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA454059/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA454059/
https://www.ebi.ac.uk/ena/data/view/PRJEB23027

	Abstract
	Keywords

	Background
	Results
	The SMURF-seq approach to sequence short molecules
	Generating higher fragment counts in a sequencing run
	Accurate CNV profiles using SMURF-seq
	Concordant profiles from fewer countable fragments

	Discussion and conclusion
	Methods
	DNA samples
	Cell lysis and DNA purification
	Fragmenting genomic DNA
	Ligation of fragmented DNA
	Library preparation (SQK-LSK108 1D DNA by ligation)
	Multiplexed library preparation (EXP-NBD103 and SQK-LSK108)
	Library preparation (SQK-RAD003 Rapid sequencing)
	MinION sequencing and base-calling
	Read alignment
	Estimation of copy number variations
	Comparison with Illumina WGS of SK-BR-3 genome.

	Additional files
	Additional file 1
	Additional file 2
	Additional file 3

	Abbreviations
	Acknowledgements
	Review history
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

